# 产品样本

# PDA高速数据采集分析系统

── 详尽解析质量管理及工业大数据来源

PDA 高速数据采集分析系统

LTA 长期历史趋势分析系统

HDS 开放式高频时序数据库HDServer

OCX WinCC-PDA FTView-PDA Web-PDA

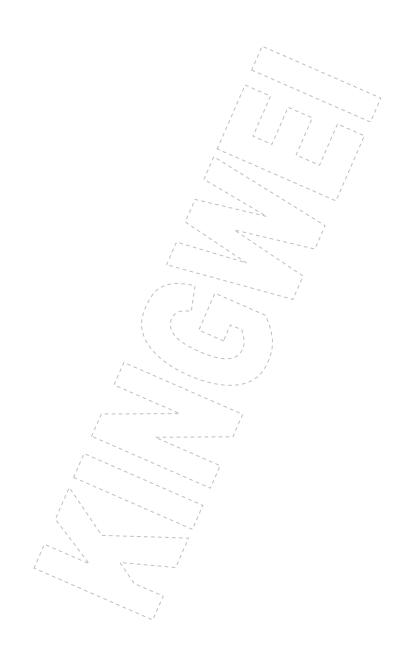
DBU数据库系统及升迁工具

DCC 高分辨率数字钢卷转换集群存贮系统(厘米级 毫秒级)

CFS 钢卷快速搜索统计系统

DSO 设备诊断同步过采样系统

RSA 轧辊剥落预警及快停系统


RCM 辊道电流监测系统

HDP 高频高密高速数据平台构建

KINGWEI PDA-10000

Answers for industry.

KINGWEI



| KI |   |   | _ |
|----|---|---|---|
|    |   |   |   |
|    |   |   | _ |
|    | _ | _ |   |

PDAServer V2.1 PDAClient V8.0

# 产品样本

SDC REF-MANU-0AB0 2025年01月版

| 背景和意义                        | 1    |
|------------------------------|------|
| PDA 高速数据采集分析系统               | 2    |
| PDA 系统概述                     | 2.1  |
| 应用领域                         | 2.2  |
| 系统功能性能                       | 2.3  |
| 技术参数                         | 2.4  |
| 系统结构和网络拓扑图                   | 2.5  |
| 支持的 PLC、总线和厂商                | 2.6  |
| 数据平台 PLC 通讯协议服务              | 2.7  |
| 数据采集及分析视图                    | 2.8  |
| WinCC-PDA FTView-PDA Web-PDA | 2.9  |
| Linux 下使用 PDAClient 分析工具     | 2.10 |
| PDA 🛱                        | 2.11 |
| 全厂毫秒级高速数据采集 / /              | 2.12 |
| 高速数据转发                       | 2.13 |
| LTA 长期历史趋势分析系统               | 3    |
| HDS 开放式高频时序数据库 HDServer      | 4    |
| DBU 数据库系统及升迁工具               | 5    |
| PDA → SQLServer 实时数据         | 5.1  |
| PDA → SQLServer 历史数据         | 5.2  |
| PDA → influxDB 实时数据          | 5.3  |
| 自动报表                         | 5.4  |
| DCC 数字钢卷转换存贮系统               | 6    |
| 数字钢卷用途                       | 6.1  |
| 数字钢卷转换计算                     | 6.2  |
| 长度、时序、设备、设备诊断数字钢卷            | 6.3  |
| 对齐 ``,                       | 6.4  |
| 实时数字钢卷                       | 6.5  |
| 基础版、标准版、专业版、企业版              | 6.6  |
| 高分辨率的实时质量判定和设备状态判别           | 6.7  |
| 数字钢卷分析工具 BigOffice           | 6.8  |
| 数字钢卷在质检中的应用                  | 6.9  |
| 数字钢板                         | 6.10 |
| 数字钢管                         | 6.11 |
| / 冷轧数字钢卷                     | 6.12 |
| CFS 钢卷快速搜索统计系统               | 7    |
| 工作方式的变化                      | 7.1  |
| 工作平台的变化                      | 7.2  |
| 数据频度粒度的变化                    | 7.3  |
| 系统结构                         | 7.4  |
| 实施方案                         | 7.5  |
| DSO 设备诊断同步过采样系统              | 8    |
| RSA 轧辊剥落预警及快停系统              | 9    |
| RCM 辊道电流监测系统                 | 10   |
| HDP 高频高密高速数据平台构建             | 11   |
| 工程业绩及典型项目应用情况                | 12   |
| 设备选型                         | 13   |
|                              |      |



# 1 背景和意义

PDA(Process Data Acquisition)高速数据采集分析系统是一种集数据采集、压缩、存贮和分析于一体的工业实时高速数据采集与分析平台,具有在线和离线分析功能,所涉及到的几乎都是控制系统和通讯协议的底层技术,这是我国的重大技术短板,工业控制领域高性能控制器基本被国外垄断,现场总线标准、通讯协议几乎由国外公司掌控,对工业数据进行高速采集面临诸多技术壁垒和国外的高强度重重加密,自主地拿到我们自己的机台、自己工厂的高频高密数据是一种奢望,这种局面迫切须要改变。

经纬铭月科技(武汉)有限公司秉持"合作、诚信、务实、创新"的工作理念, 勇于追求高质量、高可靠性的产品品质,服务客户,是国内研发、拓创的成功典范。

二十多年来,我们的研发团队专注于通讯协议研发、现场总线剖析、高速数据 采集、实时数据压缩、海量数据存贮、在线数据分析等技术的探究,倾注了无限的 精力和热忱,孜孜以求,在相关公司的精诚合作下成功开发了一系列的 PDA 硬软件 产品,系统综合性能指标国际领先。

多年的发展与创新,融品牌、人脉、信誉、质量及政府、用户的支持为一体, 成为国内外集生产、研发和销售为一体,规模适中、支持数据源种类较齐全的工业 高速数据采集及分析系统供应商,构建了一套完整的技术标准。

产品设计符合国际标准、兼容了国内外主流电气品牌,满足工业级需求,在冶金等行业得到了广泛应用和用户的一致好评,对国产控制器和通讯协议的完全支持是我们毫不犹豫的选择。

不辍追循电控技术的发展趋势,力求技术经济的完美结合正是经纬科技的长久使命。

"满足用户需求、为客户创造价值"是我们永恒的期盼和行动指南。

诚邀全国各地合作伙伴、区域代理商,提供全方位产品 OEM。

本产品具有优异的技术性能和强大的价格优势。

合作伙伴、代理商的权益可以充分保证。

欢迎半导体、冶金、石化、水泥、啤酒、能源、煤炭、电力、医药、烟草、加热炉、环保、机械制造、交通运输、大型船舶、造纸印刷、军工、军事、航空、航天、水处理等行业用户、设备供应商、代理商、PLC销售商垂询。

# 2 PDA 高速数据采集分析系统

PDA 正逐渐成为设备、工艺等各专业工程师的主要分析工具,同时它也是一个 高性能的通用产品,是工业 4.0 时代大数据基础平台。 PDA 服务器通过多种形式采集来自不同信号源的数据,采样点数可灵活配置。

- □ 为设备制造厂提供设备测试的手段
- □ 为生产厂的运行维护提供设备故障诊断和状态检测的有效方法
- □ 为动态过程分析提供便捷的工具
- □ 为产品质量异议判别提供准确的依据
- □ 为新产品、新工艺开发提供强力数据支撑
- □ 智能无人驾驶数据记录仪—雷达、图像识别、语音识别、深度学习、激光测 距、路径规划、驾驶指令、导航定位、设备状态

#### 2.1 PDA 系统概述

PDA 系统可不间断同时采集多种多台 PLC 控制器数据,采样周期可到 0.05 毫秒,采样点数可到 100000 点,支持常用主流 PLC、网络、总线、硬件接口模块等,支持多服务器多客户端模式,特殊设备合作开发 PDA 驱动,定制专用分析功能。



- 图-2.1 应用界面

#### 2.2 应用领域

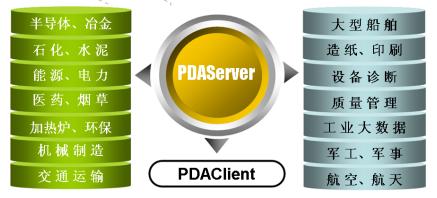



图 2.2 PDA 系统应用行业



图 2.3 PDA 系统应用领域

#### 2.3 系统功能性能

开放、兼容、通用 毫秒级的数据采样 100000 点存取 高效实时数据压缩

支持常用主流 PLC 支持内存映象网

微秒级的时间分辨率

支持现场总线和硬件 IO

无线数据采集

采用客户机/服务器结构

支持多主多从多窗口

专用板卡、专用网络

特殊设备合作开发 PDA 驱动信号搜索、分层、分组

信号树导出

Excel 配置地址薄

电文支持(各种类型混排)

数据打包采集

分析数据导出

历史数据导出

逻辑虚拟信号

实时趋势

历史趋势

动态回放

多栏屏显

双x轴标记

双y轴标记

动态y轴标记

自动定标

对齐功能

时序分析

二维视图

三维视图

曲线拟合

三维曲面视图

曲面拟合

板形分析

频谱分析

相位分析

能谱分析

加速度分析

同比分析

视图导航

滚轮平移

滚轮缩放

趋势图平移

变焦缩放

视图高度调整

数据统计

统计数据导出

数据字典

数字滤波

视频同步分析

绝对/计算时钟/

分析策略。

X-Y 轴转换

数字表

-曲线标注

故障分析

捕捉瞬时信号

事件标注

专家系统

系统报警

数据库升迁

数据远传

质量报表

QDR 质量数据记录

质量异义判别

轴承油膜计算

轧机刚度测量

轧机刚度跟踪报表

大型液压缸性能测试报表

动态运行记录及抄表系统

动态能耗报表

采集点数灵活配置

采集状态指示

无线模块组态

示波器波形分析

历史数据接口

兼容第三方数据格式

插件

视频同步分析接口

在线数据接口

数据文件生成完成接口

完全开放的实时数据接口

Oracle 等数据库实时接口

质量管理系统及大数据接口

HMI 接口

高速转发、ModbusTcp

OpcUaServer / OpcUaClient

KafkaServer / KafkaClient

mqttServer / WebSocketServer

Ftp Server / Http Server

全流程质量管理及数据分析

定制专用分析功能

专用板卡合作开发

数据平台 PLC 通讯协议服务

分布式数据采集

秒级天数据文件

分钟级年数据文件

大数据 Office 云同步

中文 / 英文 / 任意语种

#### 2.4 技术参数

支持主流 PLC 控制器、总线、智能系统及设备。

#### 2.4.1 数据类型

字符串: LSTRING[Length]: 占用 2 + Length 字节,

前2字节为字符串最大长度和实际长度

STRING[Length]: 占用 1 + Length 字节, 第 1 字节为字符串实际长度

CHAR[Length]: 占用 Length 字节

模拟量: SINT: signed char, int8, smallint, SByte

BYTE: USINT, unsigned char, uint8

INT: short, int16, shortint

DINT: long, int32, longint, lint, integer

WORD: UINT, uint16, unsigned int, DATE, S5TIME

DWORD: UDINT, unsigned long, uint32, longword, cardinal, ulong,

TIME, TIME\_OF\_DAY

INT64:

UINT64:

REAL: FLOAT, single

DOUBLE: LREAL, DateTime

数字量: BIT(BOOL, Boolean)

混排

#### 2.4.2 采样周期

0.05ms 级(0.05ms、0.2ms、0.8ms······50.0ms)

ms 级(1.0ms、2.5ms、3.6ms······50.0ms)

10ms 级(10ms、11ms、12ms······50ms)

#### 2.4.3 数据压缩

实时压缩:注重实时性和效率。

高效压缩: 高的压缩比, 注重压缩率。

不压缩: 注重开放性。

#### 2.4.4 采集点数

不小于 100000点, 当采集周期很短时依计算机性能会有所减少。

#### 2.4.5 数据源连接数

≤100

#### 2.4.6 数据采集方式

工业以太网、Profibus-DP、RFM、TC-net 网等网络采集。 硬件接口模块采集。

PLC 主动发送数据,PDA 服务器接收。PDA 服务器直接读取 PLC 中的数据。数据打包传送。

#### 2.4.7 系统时钟

计算时钟 实时时钟(广域同步)

## 2.4.8 数据接口

支持 Dos、Windows32/64、Linux32/64、Android、Mac OS、iOS 等平台 完全开放的历史数据接口、全面兼容第三方数据、插件

视频同步数据接口

在线数据接口

数据文件生成完成接口

完全开放的实时数据接口

Oracle 等数据库实时接口

质量管理系统及大数据接口(内存指针+数据文件)

HMI 接口(内存指针+数据文件)

高速转发、ModbusTcp、Opc Ua、MQTT、Kafka、WebSocket

#### 2.4.9 分布式数据采集

局域以太网时钟同步误差小于 1 毫秒。

支持 GPS 等时钟同步。



图 2.4 分布式数据采集

#### 2.4.10 系统设备

尽可能采用通用设备和协议 摒弃专用接口模块和网络

#### 2.5 系统结构和网络拓扑图

通过总线、网络、接口模块对控制器及各类实时数据进行高速采样,并提供如下分析功能,绘图模式的选择:基于时间的 X 轴、基于长度等的 X 轴、普通图形、2D 图形、3D 图形;统计功能:计算选定区间最大值、最小值、瞬时值、平均值、标准差、方差;颜色控制;视图导航;信号间的算术运算:加、减、乘、除、平方、开方、常用数学函数的四则运算;各种滤波器:低通、高通、带通、带阻;快速傅里叶变换等。

本系统主要由数据采集服务器、数据采集和分析软件组成,网络配置如下图。

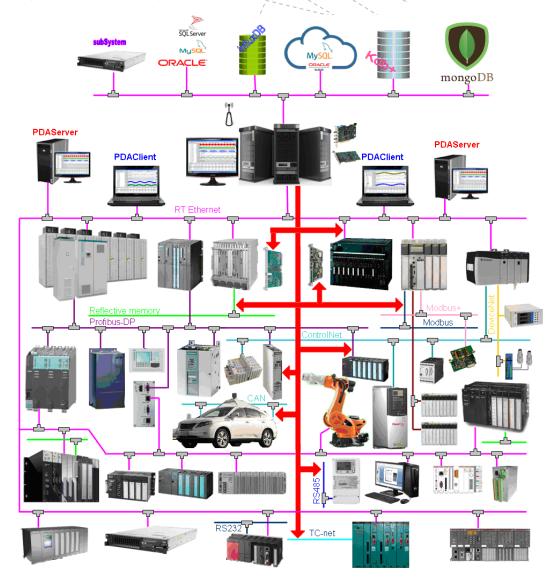



图 2.5 系统网络配置图

# 2.6 支持的 PLC、总线和厂商

| 采集主流 PLC 控制器数据                                                              |     | PowerPC, VxWorks                  |
|-----------------------------------------------------------------------------|-----|-----------------------------------|
| 采集智能控制器数据                                                                   |     | GE PACSystem                      |
| 采集现场总线上的数据                                                                  |     | GE 9070/9030                      |
| 采集远程 AI、DI 模块信号                                                             |     | ALSTOM HPCi                       |
| 无线数据采集                                                                      |     | ABB AC500/AC31                    |
| 采集内存映象网数据                                                                   | Į   | BECKHOFF                          |
| 采集 PC 数据                                                                    |     | WAGO MOOG                         |
| 多种多台 PLC、无限点                                                                |     | OPC / OPC Ua                      |
| 专用设备合作开发驱动 / / / □                                                          |     | LogiCAD TCS CoDeSys IsaGraF       |
| 采集硬件卡 AI、DI 信号                                                              | ]/  | Modicon 984/Quantum/Premium/      |
| 0~5V / 0~ ±5V / 1~5V / 0~10V / 0~ ±10V                                      |     | Momentum/M340                     |
| $0\sim10\text{mA}/0\sim\pm10\text{mA}/4\sim20\text{mA}/0\sim\pm20\text{mA}$ | Ì`  | Rockwell Automation/Allen-Bradley |
| $0\sim1A/0\sim5A/0\sim\pm1A/0\sim\pm5A$                                     | ` ` | MicroLogix 1000, 1100, 1200, 1500 |
| mV 等弱信号                                                                     |     | SLC 500 CompactLogix              |
| +5 / +12 / +24VDC 数字量                                                       |     | FlexLogix PLC-5                   |
| 16Bit A/D 转换,PDA 系统时基 0.5~200.0ms                                           | 1   | ControlLogix SoftLogix 5800       |
| 8/16 通道模拟量输入,隔离 / 全隔离型 /                                                    | ~   | RSLogix                           |
| 8/16/32通道数字量输入,光电隔离 / 全隔离型                                                  |     | Westinghouse WDPF                 |
| 通道可按信号类型分组                                                                  |     | Ethernet UDP                      |
| 模块可级联扩展至数百点                                                                 |     | Ethernet TCP                      |
| 热电阻 Pt100/Cu50 □                                                            |     | S7 Ethernet TCP / iso             |
| 热电偶 J/ K/ T/ E/ R/ S/ B                                                     |     | Profinet                          |
| 角位移、电子尺                                                                     |     | Beckhoff Realtime Ethernet        |
| 电位器、频率信号                                                                    |     | EtherCAT                          |
| SSI 串行同步接口 /                                                                |     | Beckhoff Ads                      |
| 通信速率: 250KHz、500KHz、1MHz、2MHz                                               |     | MPI / DP                          |
| 数据长度: 16/32 位                                                               |     | Profibus-DP                       |
| 实时数据文件 / ````` \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \                              |     | Modbus ModbusTCP                  |
| Siemens S7-400 / FM458                                                      |     | RS232 / RS485                     |
| 采样周期可到 2ms,点到点                                                              |     | CANopen DeviceNet                 |
| Siemens S7-300 S7-1200 S7-1500                                              |     | EGD                               |
| Siemens TDC、S7-200smart                                                     |     | EtherNet/IP                       |
| GDM(Global data memory)                                                     |     | Reflective memory                 |
| Simotion SCOUT                                                              |     | TC-net                            |
| Mitsubishi                                                                  |     | Inverter and so on                |
| 电能表 DL/T645-2007                                                            |     | 其它专用总线                            |



图 2.6 现场总线及支持厂商

#### 2.7 数据平台 PLC 通讯协议服务

#### 2.7.1 自动化总线协议分类

自动化系统总线和协议种类繁多,有些开放,有些是专用的。 按通讯介质分类如下表。

| 序 | 通河人氏      | 法庇   | PDA 数据タ  | 采集方案                             | bı∀                                                 |  |
|---|-----------|------|----------|----------------------------------|-----------------------------------------------------|--|
| 号 | 通讯介质      | 速度   | 硬件       | 软件协议                             | 例子                                                  |  |
| 1 | RS-232    | 全波特率 | 普通串口     | PDA集成                            | Modbus                                              |  |
| 2 | RS-485    | 全波特率 | 转 RS-232 | PDA 集成                           |                                                     |  |
| 3 | RS-485    | 全波特率 | 专用网卡支持   | PDA 集成<br>API/OPC<br>网关<br>第三方接口 |                                                     |  |
| 4 | 专用 RS-485 |      | 专用网卡支持   | PDA 集成<br>API/OPC<br>网关<br>第三方接口 | Profibus-DP<br>CAN<br>DeviceNet                     |  |
| 5 | 以太网       | 较快   | 普通以太网口,  | PDA集成                            | Profinet                                            |  |
| 6 | 以太网       | 快速   | 专用网卡支持   | PDA 集成<br>API/OPC<br>网关<br>第三方接口 | EtherCAT                                            |  |
| 7 | 内存映象网     | 快速   | 专用网卡支持   | PDA 集成<br>API/OPC<br>网关<br>第三方接口 | GE Reflective Memory<br>Siemens GDM<br>TMEIC TC-net |  |
| 8 | 其它        |      |          |                                  |                                                     |  |

部分 PLC 中可不用编程序,按变量地址或符号直接读取 PLC 中的数据。 对于同一厂商不同时期或不同厂商对同一协议的不同理解 PDA 均区别对待。

对第三方数据平台全面开放实时数据接口,便于用户进行灵活多样的数据存贮和处理。

PDA 系统具有完善的通讯协议软件开发模板,能快速地开发未知未来协议。

#### 2.7.2 主流常用自动化协议

#### 2.7.2.1 过程自动化

AS-interface • BSAP[Bristol Standard Asynchronous Protocol] • CC-Link Industrial Networks • CIP[Common Industrial Protocol] • CAN bus[Control Network](CANopen • DeviceNet) • ControlNet • DF1 • DirectNET • EPA Ethernet for plant automation • EtherCAT[Ethernet for Control Automation Technology] • EGD[Ethernet Global Data, GE/ALSTOM HPCi] • Ethernet Powerlink • ControlLogix/CompactLogix/MicroLogix] • EtherNet/IP[Rockwell Instrumentation Protocol] • FINS • FF[FOUNDATION fieldbus](H1 • HSE) • GDM[Siemens Global Data Memory] • GE RFM[Reflective Memory, 5565/5576 VxWorks LogiCAD CoDeSys IsaGRAF] • GE SRTP[Service Request Transport Protocol, GE Fanuc 90/VersaMax/PACSystems] • HART Protocol • Honeywell SDS • HostLink • INTERBUS • IO-Link • Lightbus • Lonworks • MECHATROLINK • MelsecNet • Modbus/Modbus Tcp[Schneider-Modicon 984/Quantum···] • MP-bus[Modular Power Bus] • Optomux • PieP • Profibus • PROFINET • RAPIEnet[Real-time automation protocol for industrial ethernet] · Realtime Ethernet[Beckhoff] · SafetyBUS p · SERCOS interface • SERCOS III • Sinec H1 • Symotion • SyngNet • TMEIC TC-net • TTEthernet[Time-Triggered Ethernet] • WorldFip.

#### 2.7.2.2 工业控制系统

EtherNet/IP-backplate[Rockwell\_ControlLogix/CompactLogix/MicroLogix] • GE SNP/SNPX • MTConnect • OPC[OLE for Process Control] • Profibus-MPI/DP • S7 Ethernet Tcp/iso[Siemens S7-400/S7-300/TDC/FM458]。

# 2.7.2.3 楼宇自动化

1-Wire • BACnet • C-Bus • CC-Link • DALI[Digital Addressable Lighting Interface] • DSI[Digital Signal Interface] • Dynet • Enocean • FIP • Idranet • KNX[EIB/BatiBus/EHSA] • LonTalk • Modbus • Modbus/Tcp • oBIX • VSCP • X10 • xAP[xAP Home Automation protocol] • xPL • ZigBee。

#### 2.7.2.4 电力系统自动化

CDT[Cyclic Digital Transmission] • IEC 60870 • (IEC 60870-5-101 • IEC 60870-5-102 • IEC 60870-5-103 • IEC 60870-5-104 • IEC 60870-6) • DNP3 • FIP • IEC 61850 • IEC 62351 • Modbus • Profibus

#### 2.7.2.5 智能抄表

ANSI C12.18 • IEC 61107 • DLMS/IEC 62056 • DL/T645[Multi-function watt-hour meter communication protocol] • M-Bus • Modbus • ZigBee •

#### 2.7.2.6 车辆/交通工具

AFDX[Avionics Full-Duplex Switched Ethernet] • ARINC 429 • CAN bus(ARINC 825 • SAE J1939 • NMEA 2000 • FMS) • FIP • FlexRay • IEBus • IDB-1394 • J1587 • J1708 • KWP2000[Keyword Protocol 2000] • SMARTwireX • UDS[Unified Diagnostic Services] • LIN[Local Interconnect Network] • MOST • VAN[Vehicle Area Network] •

#### 2.8 数据采集及分析视图

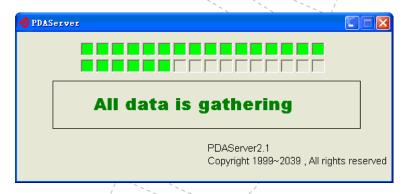



图 2.7 数据采集软件运行界面

图 2.8~图 2.29 为分析软件运行界面。

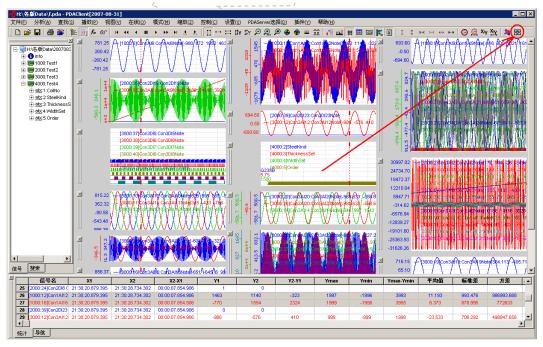
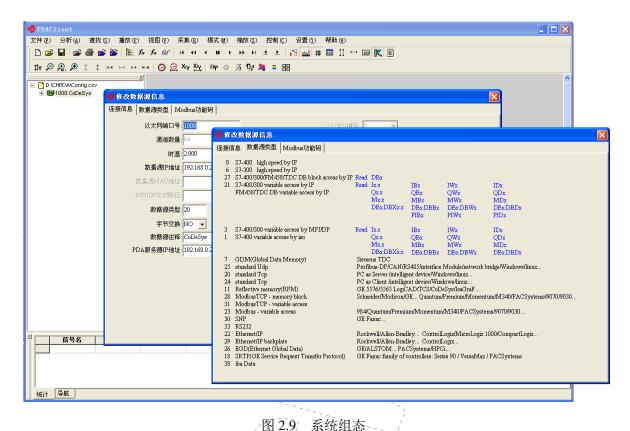




图 2.8 分析软件主界面及多栏显示



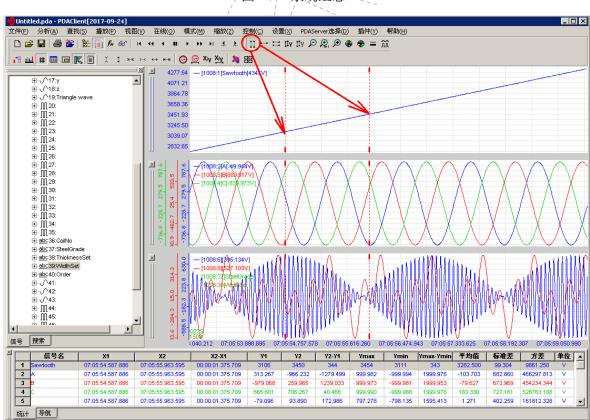



图 2.10 双 x 轴标记

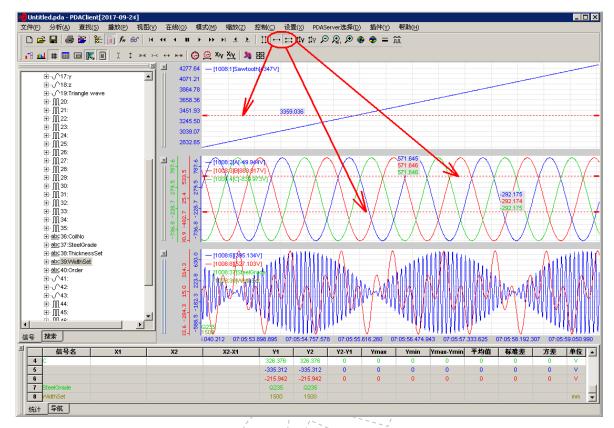



图 2.11 动态 Y 轴及双 Y 轴标记

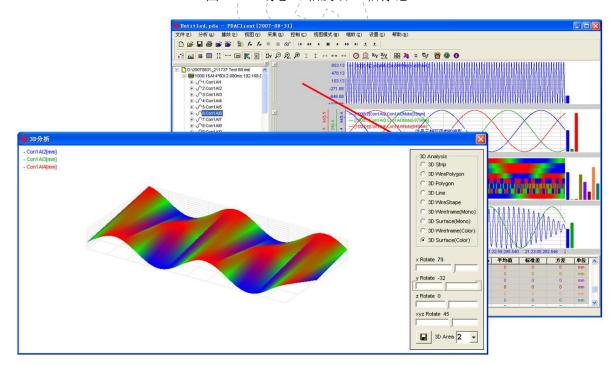
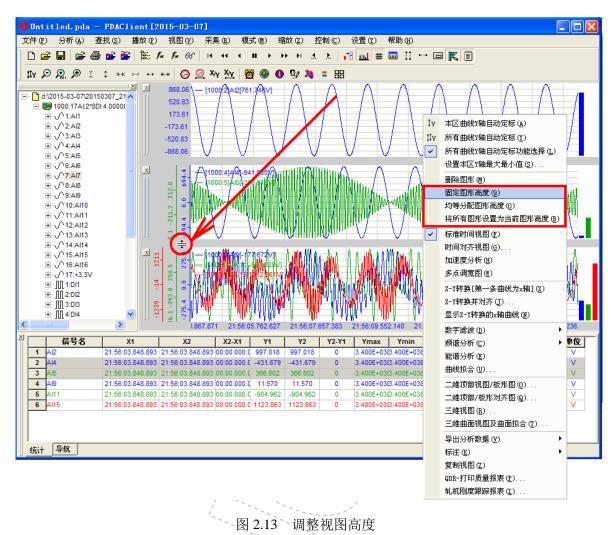




图 2.12 二/三维视图分析



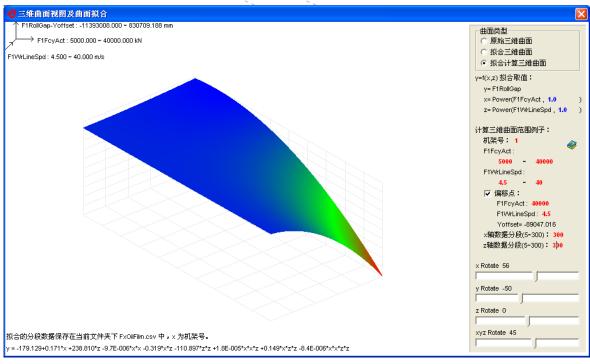



图 2.14 三维曲面视图及曲面拟合

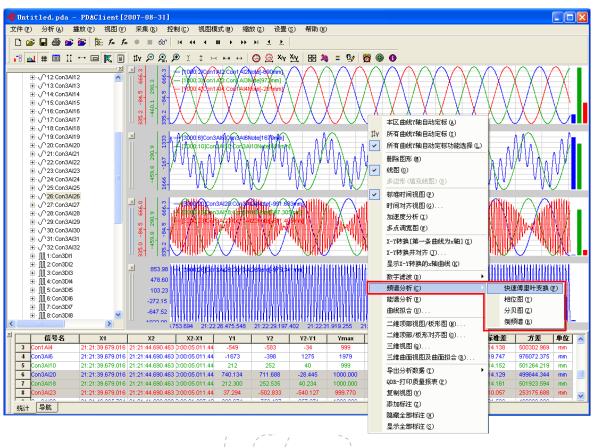



图 2.15 FFT-频谱分析

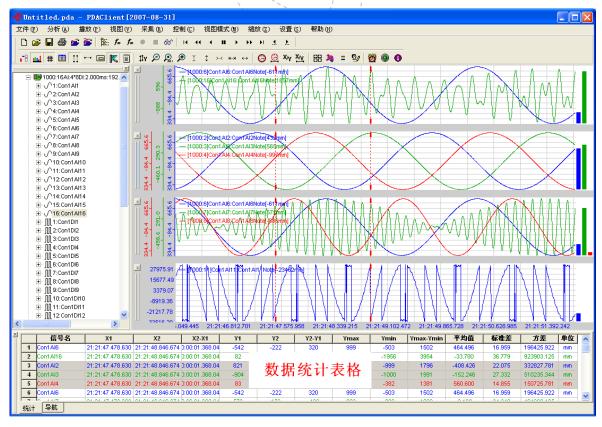



图 2.16 数据统计表格

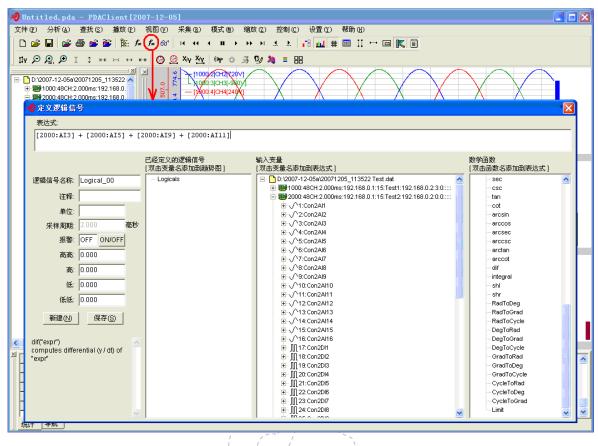



图 2.17 逻辑信号-公式

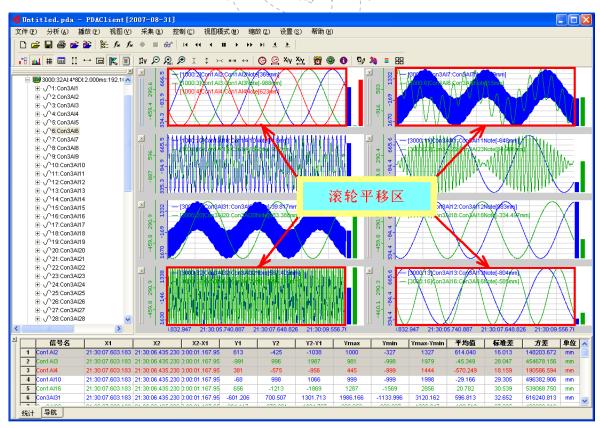



图 2.18 X 轴滚轮趋势图平移

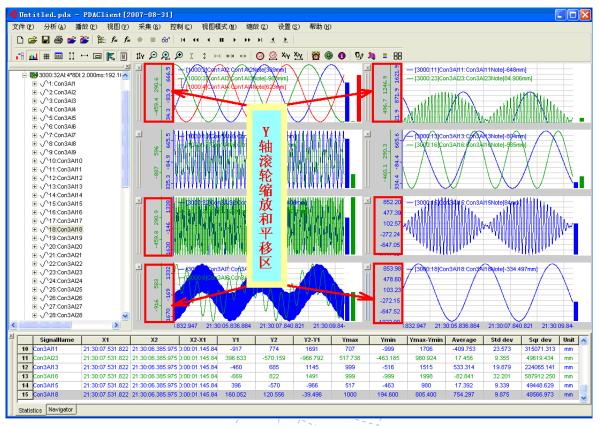



图 2.19 Y 轴滚轮缩放和平移

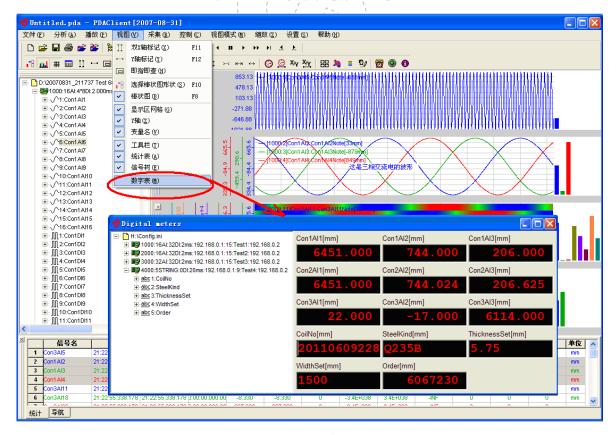



图 2.20 数字表

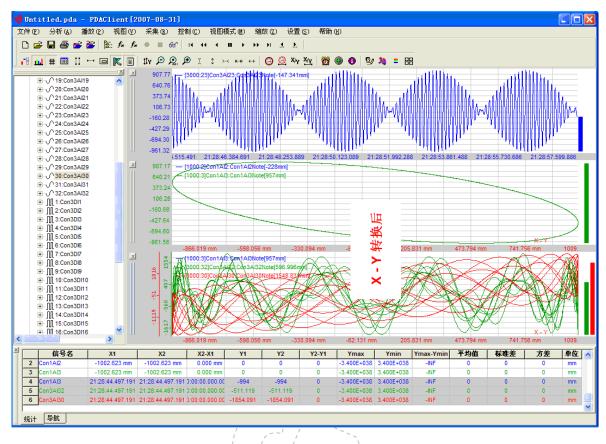



图 2.21 X-Y 转换和对齐

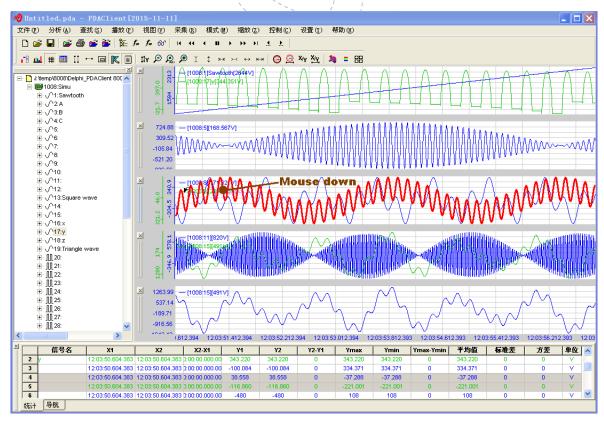
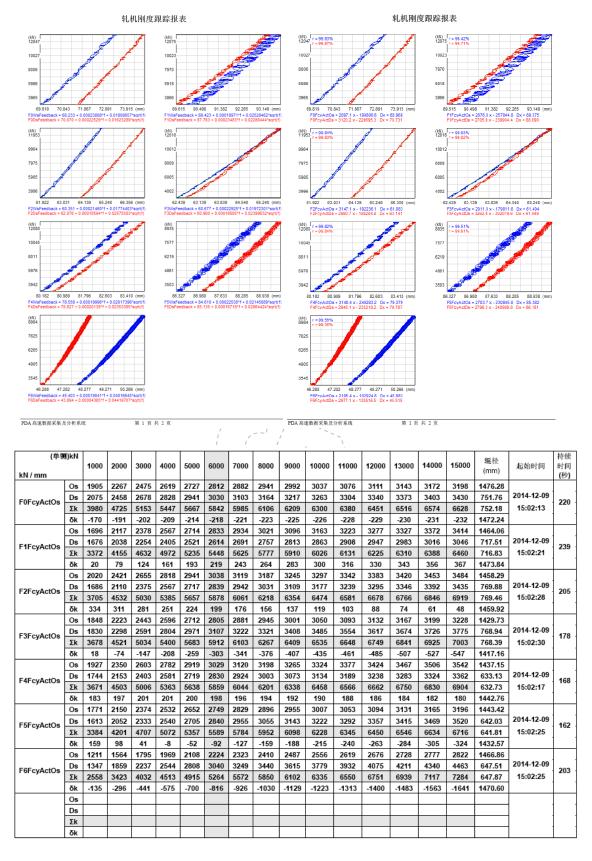




图 2.22 曲线标注



PDA高速数据采集及分析系统

第2页共2页

图 2.23 轧机刚度测量

# Report\_4522T01030

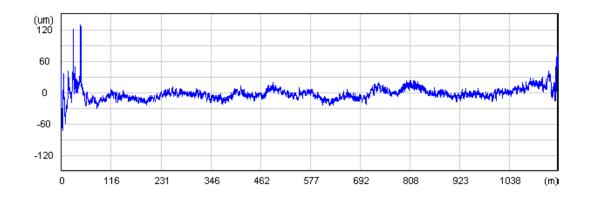
Coil No: 4522T01030

Alloy Code: SPHC

Thickness: 1.82 mm

Width: 1252 mm




Body Average thickness Deviation: -1.5 um
Body Min thickness Deviation: -58.3 um
Body Max thickness Deviation: 130.7 um

Strip width(average): 1258.8 mm Strip length: 1153.3 m

10.0 m 1133.3 m 10.0 m

4522001030

Tolerance: ± 30.0 um Percent: 98.64 %



Start time of recording: 2014-06-12 13:31:40

Duration(Seconds): 126

Page: 1 of 1

图 2.24 质量数据记录 QDR 报表

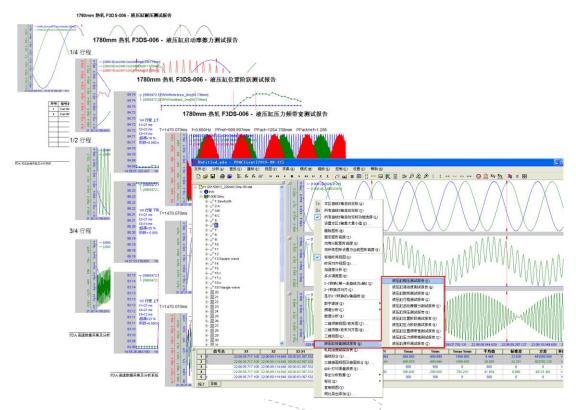



图 2.25 大型液压缸性能测试

#### 2.9 WinCC-PDA FTView-PDA Web-PDA

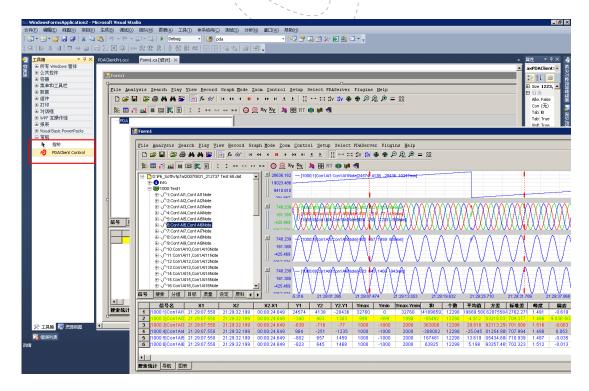



图 2.26 C#中调用 PDAClient.ocx

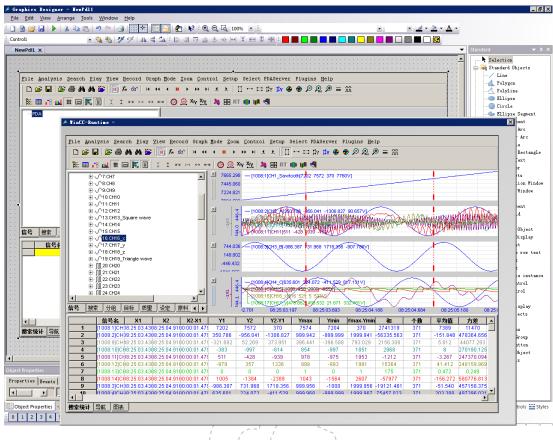



图 2.27 WinCC 中调用 PDAClient.ocx

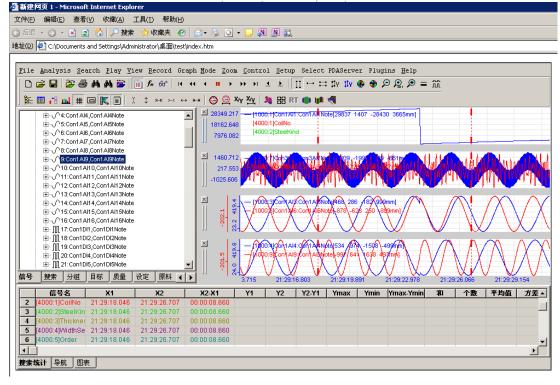



图 2.28 浏览器中调用 PDAClient.ocx

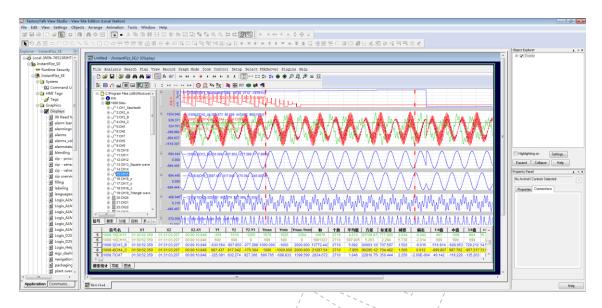



图 2.29 FactoryTalk View 调用 PDAClient.ocx

# 2.10 Linux 下使用 PDAClient 分析工具

Linux 下 Wine 可以直接调用 PDAClient 分析工具。

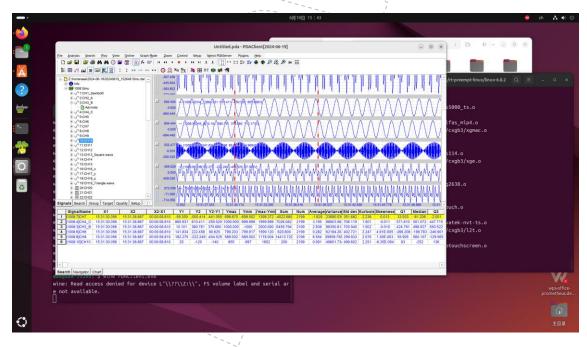



图 2.30 Linux 下使用 PDAClient.exe

#### 2.11 PDA 云

pdaCloud 可将①天文件列表.Lst、②天秒级数据文件.dat、③合适的高速数据文件.dat、④日志文件.log 发送到指定的云同步文件夹中,把⑤实时数据及曲线写入云数据库,供WinRC或移动端远程监控。

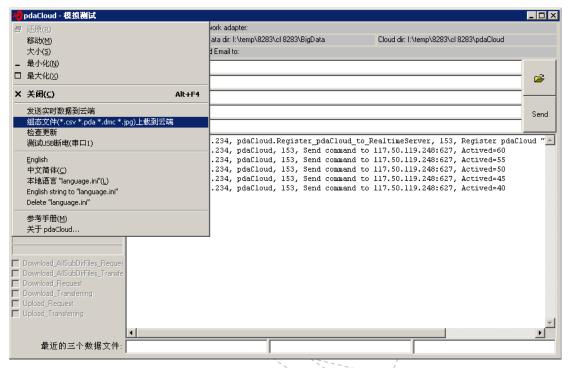



图 2.31 PDA 云数据准备

### 2.12 全厂毫秒级高速数据采集

PDA 支持 10 毫秒 3 万点的数据采集,全厂中的慢速或触发信号统一高速保存,超过 3 万点可以采用多台 PDA 服务器,PDAServer 把采集的信号降频后写入多台 SQLServer、MySQL、ORACLE等关系型数据库,毫秒级信号写入 influxDB 等时序型数据库,其它子系统需要实时数据也由 PDAServer 高速或降频转发。

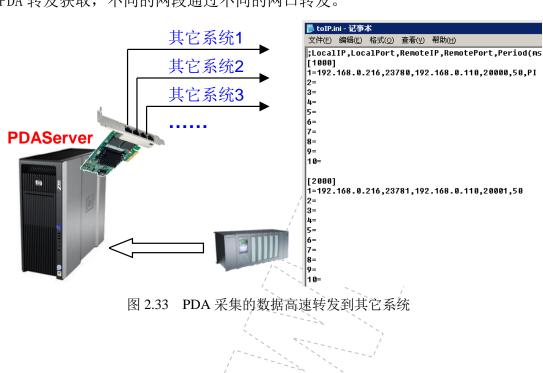




图 2.32 PDA 采集的数据保存到数据库

#### 2.13 高速数据转发

PDA 服务器增加多口网卡,其它系统需要的数据原则上不直连 L1 控制器,都通

过 PDA 转发获取,不同的网段通过不同的网口转发。



PDA 产品样本

# 3 LTA 长期历史趋势分析系统

除毫秒级的数据记录外,缓慢变化的生产过程需要进行月度、季度、年度的曲线分析,PDA系统可以一次数据采集获取多种频度降频数据,从而可以快速分析长期趋势(Long Trend Analysis),可广泛应用于高炉、加热炉、石化、啤酒等流程行业及液位、温度等参数的分析。

长期趋势分析主要意义有三个:一是为了认识现象随时间发展变化的趋势和规律性;二是为了对现象未来的发展前景和趋势作出预测,时序数据之所以存在长期趋势,是因为受到某些基本的、决定性因素的影响,这些起着支配作用的因素,其影响越强烈,长期趋势就越明显。由此,通过对时序数据长期趋势的分析,可以掌握现象发展、变化的内在机理,可以评价过去所采取的方针措施的成效;三是为了从时间序列中剔除长期趋势成分,以便于分解出其他类型的影响因素,如季节变动、循环变动和不规则变动。

测定长期趋势值的方法主要有:扩大时距法、移动平均法和最小二乘法。扩大时距法是指通过扩大动态序列各项指标所属的时间,从而消除因时距短而使各指标值受偶然性因素影响所引起的波动,以便使经修匀过的动态序列能够显著地反映现象发展变动总趋势的方法。移动平均法是指对动态序列进行逐期移动以扩大时距,同时对时距已扩大了的新动态序列的各项指标值分别计算时序平均数,从而由移动平均数形成一列派生动态序列的方法。而通过移动平均得到的一系列移动时序平均数分别就是各自对应时期的趋势值。最小二乘法,又称最小平方法,是估计回归模型参数的常用方法。其基本原理是:要求实际值与趋势值的离差平方和为最小,以此拟合出优良的趋势模型,从而测定长期趋势。

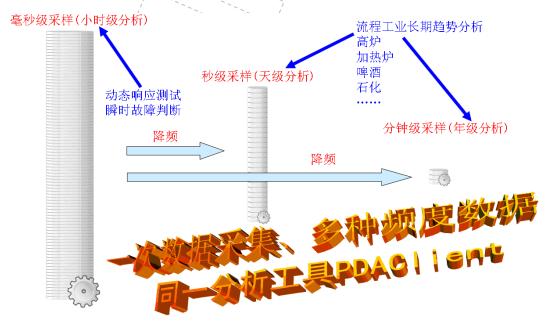



图 3.1 PDA 长期历史趋势数据降频

#### 3.1 毫秒级 - 小时数据分析

10毫秒采集一次数据,10分钟生成一个数据文件。

#### 3.2 秒级 - 月度数据分析

1秒钟采集一次数据,1天生成一个数据文件。

#### 3.3 10 秒级 - 季度数据分析

10 秒钟采集一次数据, 1 周生成一个数据文件。

#### 3.4 60 秒级 - 年度数据分析

60 秒钟采集一次数据, 1 周生成一个数据文件, 1 年 52 个数据文件。

#### 3.5 某项目秒级7天数据曲线



图 3.2 降频到秒级的 7 天数据曲线

#### 3.6 某高炉 AB 长期历史趋势文件转 PDA 格式

AB 公司一种.dat 文件记录了长期历史趋势,但其打开速度慢,HistorianToPDA.exe 可以把该 dat 文件转换为 PDA 格式的.dat 文件,从而可以用PDAClient 快速打开几个月的趋势图,下图为一天的原始数据文件,采样周期 1 秒。

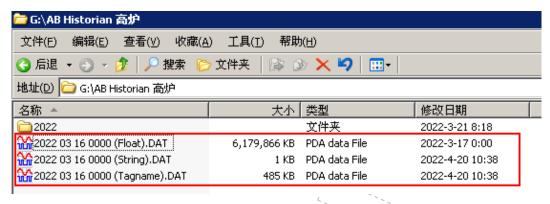



图 3.3 AB 公司长期原始数据

下图为转换成 PDA 格式的数据文件,压缩率接近 100 倍。




图 3.4 AB 公司长期原始数据转换为 PDA 格式

下图为趋势曲线。



图 3.5 AB 公司长期原始数据转换后用 PDA 打开分析

## 4 HDS 开放式高频时序数据库 HDServer

时序数据库全称为时间序列数据库,是指主要用于处理带时间标签(按照时间的顺序变化,即时间序列化)的数据,带时间标签的数据也称为时间序列数据。

时间序列数据主要由冶金、电力、化工、气象、地理信息行业等各类型实时监测、检查与分析设备所采集、产生的数据,这些工业数据的典型特点是:产生频率快(每一个监测点一秒钟内可产生多条数据)、严重依赖于采集时间(每一条数据均要求对应唯一的时间)、测点多信息量大(常规的实时监测系统均有成千上万的监测点,监测点每秒钟都产生数据,每天产生几十GB的数据量)。

常用的时序数据库有 InfluxDB、KDb+、Prometheus、Graphite、RRDtool、TimescaleDB、Apache Druid、Fauna、OpenTSDB、GridDB、DolphinDB、KairosDB等。

PDA 毫秒级的高频数据存入时序数据库后可以通过 SOL 语句访问。

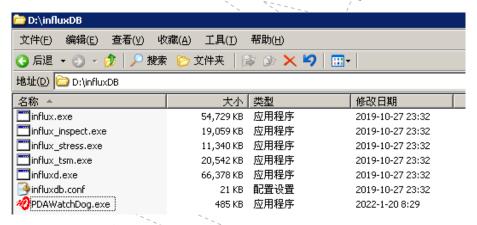



图 4.1 influx DB 时序数据库文件

dbUpgradeTS.exe将PDA采集的数据文件无损转换为 influxDB 支持的 csv 文件,并将其离线批量导入到 influxDB 中,表结构与 Config.csv 的组态完全相同。



图 4.2 升迁到 influxDB 的 PDA 组态

图 4.3 PDA 数据批量导入到 influxDB

Influx 服务程序 Console 窗口取消快速编辑模式和插入模式,避免输入干扰。

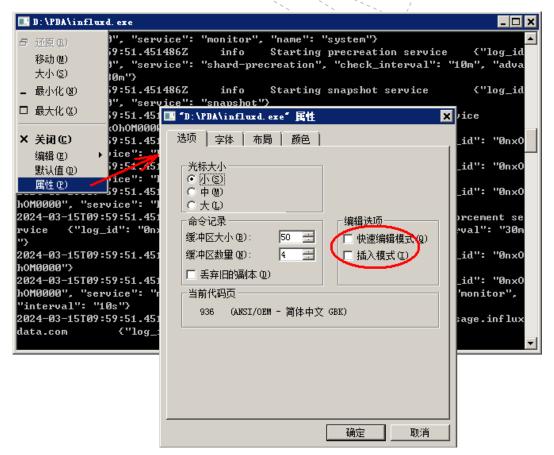



图 4.4 influxd 模式设置

### 5 DBU 数据库系统及升迁工具

数据库支持 SQL 语句且具有较好的开放性,有必要将 PDA 采集的高频数据升迁到关系型及时序型数据库中,实现 PDA 采集点与各数据库表名、字段名及数据的统一

#### 5.1 PDA → SQLServer 实时数据

PDA 可将采集的数据按配置好的周期数通过 dbUpgradeRtA. exe、dbUpgradeRtB. exe ~ dbUpgradeRtJ. exe 实时保存到 SQLServer/MySQL/Oracle 等关系型数据库,数据保存有下图七种触发方式,首次运行时按 dbUpgradeRtA. ini、dbUpgradeRtB. ini ~ dbUpgradeRtJ. ini 的组态自动创建数据库表,组态变化后人工按 ini 配置修改表结构。

```
[TableNamel] 变化就写列式数据库表
 Trigger=1000,3
 1=1000,1,第1个变量
2=1000,3,第2个变量
 3=1000,6,第3个变量
 4=2000,2
 5=3000,5,第5个变量
 6=4000,3,第6个变量
 [TableName2] 0->非0 写列式数据库表
Edge=2000,32
1=1000,21,TableName2第1个变量
2=1000,13,TableName2第2个变量
 3=3000,69,TableName2第3个变量
 4=2000,22
5=3000,15,TableName2第5个变量
6=3000,20,TableName2第6个变量
[TableName3] TriggerPort, TriggerCH, 0->非0 写行式数据库表, 第1个变量决定了字段的数据类型
                                                                                     apateTime, aTimestamp, aPort, aCH, aId, aMame, aValue, aPLCTimestamp, 53
1000, 1, 重新取个名字不用Config.csv中的名字1
1000, 3, 重新取个名字不用Config.csv中的名字2
3000, 69, 重新取个名字不用Config.csv中的名字3
4000, 2, 重新取个名字不用Config.csv中的名字4
EdgeRowDB=
                              1000,
                                                            26,
1=
2=
3=
                                                                                                                                            3000, 70, 重新取个名字不用Config.csv中的名字5
 [TableName4] TriggerPort,TriggerCH,PLCTimestampPort,PLCTimestampCH,O->非0 下述各行写一次数据库表,第1行决定所:
                                                       ,26
                                                                                ,3000
                                                                                                                          ,22
                                                                                                                                                                ,DateTime,Timestamp, aIdl,aFieldl,aField2,aF
EdgeRow=
                               1000
                                                                                                                                                                                                                                  3000,70, 1000,3, 1
                                                                                                                                                                                                                                  1000,27, 1000,3, J
3000,69, 3000,70
2=
                                                                                                                                                                                                                                  1000,29, 4000,5
1000,30, 4000,3
4=
[AlarmTableNamel] EdgeRising 下述每行第1个变量各自 0->非0 写行式数据库表,第1行决定所有20个字段的数据类型
dWbrite=1, aFieldd,aFieldd3,aField4, aField5, aField6, aField7, aField8, aField9,aField10,aField11,aField11,aField00,26, 1000,3, 1000,5, 4000,3, 3000,9, 4000,1, 1000,11, 2000,12, 1000,13, 3000,15, 1000,17 2=1000,27, 2000,3, 1000,5, 2000,7, 3000,9, 1000,10, 1000,11, 2000,12, 1000,13, 3000,15, 1000,17
3=1000,28,
                                  3000,6, 4000,1
2000,9, 4000,2
 4=1000,29,
 5=1000,30,
                                  4000,5, 4000,3
 [AlarmTableName2] EdgeDropping 下述每行第1个变量各自 非0->0 写行式数据库表,第1行决定所有20个字段的数据类型
dbWrite=2, aField1,aField2,aField3,aField4, aField5, aField6, aField7, aField8, aField9,aField10,aField11,aField9,aField10,aField11,aField9,aField10,aField11,aField9,aField10,aField11,aField9,aField10,aField11,aField9,aField10,aField11,aField9,aField9,aField9,aField10,aField11,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,aField9,
3=2000,36,
                                  2000,2
                                   3000,3
 4=2000,12,
5=3000,15,
                                  3000,3
[AlarmTableName3] EdgeChanging 下述每行第1个变量各自 变化 就写行式数据库表,第1行决定所有20个字段的数据类型 dbWrite=3, aField1, aField2, aField3,aField4, aField5, aField6, aField6, aField7, aField8, aField9,aField10,aField11, 1=1000,1, 2000,6, 2000,3, 2000,5, 2000,7, 4000,4, 1000,10, 2000,11, 1000,12, 2000,13, 1000,15
                                   2000,7
 3=2000,6,
 4=3000,2,
                                   2000,7, 2000,3, 2000,5, 2000,7, 2000,9, 1000,10, 2000,11, 1000,12, 2000,13, 1000,15
 5=3000,5,
```

图 5.1 实时写数据库的七种触发方式

#### 5.2 PDA → SQLServer 历史数据

dbUpgrade. exe 可将历史数据升迁到关系型数据库中,首次运行时按 Config. csv 自动创建数据库表,可降频升迁。

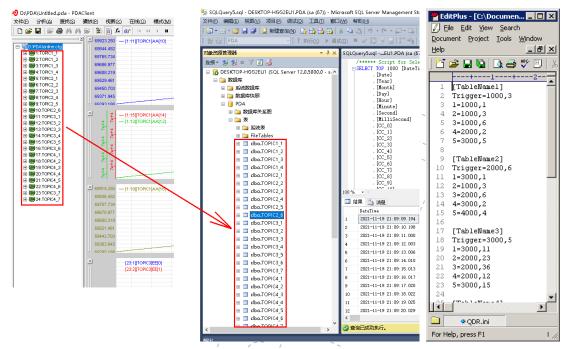



图 5.2 PDA 组态升迁到关系型数据库

# 5.3 PDA → influxDB 实时数据

dbUpgradeRtTS.ini 配置实时写数据库的触发条件和哪些变量写入哪张数据库表。

dbUpgradeRtTS. exe 调用 influx\_Rt. exe 按配置文件 dbUpgradeRtTS. ini 当满足七种触发条件之一时实时写一次数据库表,支持 0.1 秒级别的频度,写入 influx 的字段名在 Config. csv 中的 FFS 列要作正确配置,IP 及文件路径配置如下:

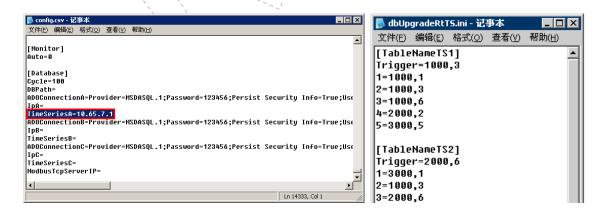



图 5.3 PDA 组态升迁到 influx DB

## 5.4 自动报表

自动报表系统是一种大数据分析统计工具。

通过数据库和 PDA 底层技术提供对微软 Power BI、帆软等各类报表工具的充分支持。

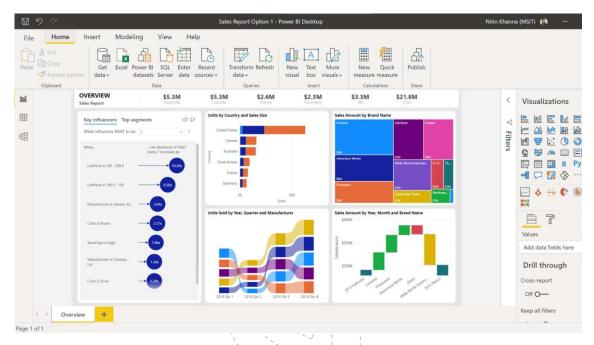



图 5.4 Power BI 报表样例



图 5.5 帆软报表样例



图 5.6 grafana 组态的实时和统计报表

# 6 DCC 数字钢券转换存贮系统

#### 6.1 数字钢卷用途

数字钢卷是热轧、冷轧信息化系统的重要组成部分,也可独立运行。

所谓数字钢卷,就是在实物钢卷上附有相关的生产数字信息,是一系列数据集合,实现钢卷"全程可视化"和"数字化",为后续的大数据分析与挖掘,提供完善、准确、可靠的数据基础,是实现智能工厂最关键的一步。它可随着实物钢卷交付,也可存放在大数据中心,供 5G 下载,其好处在于产品可追溯。因为钢卷上记录有毫秒级、厘米级的数字,如果应用到家电、建筑,尤其是汽车、硅钢、不锈钢类产品上,这将进一步对质量有所保障。加快建设制造强国,加快发展先进制造业,推动互联网、大数据、人工智能和实体经济深度融合,"数字钢卷"正是一个典型的制造业与大数据跨界融合的案例。

- ◆ 数字钢卷分为长度数字钢卷、时序数字钢卷、设备诊断数字钢卷,各有相应的用途。
- ◆ 按时效性可分为实时数字钢卷(秒级完成计算)和在线数字钢卷(分钟级完成 计算)。
- ◆ 长度方向不管粗轧、精轧、卷取,每个信号按长度等分为 30000 份,真正精确到厘米级,同时实现了长度自然对齐。
- ◆ 按头、中、尾(可分 20 段)、全长统计某种指标把 20 年的钢卷搜索一遍,10 秒钟内返回结果,不需要小时级,一般情况就 3 秒钟。
- ◆ 和国内外其它数字钢卷相比本系统理念是最有特点的,真正精确到厘米级、 毫秒级,分析工具的内核与PDA系统一致,非常适合处理庞大的数据。
- ◆ 数字钢卷是一个相对独立的系统,既可以单独运行也可以作为厂、公司、集团信息化系统中的一部分,为其它系统提供文件共享、数据库、FTP、HTTP、MQTT等各类全开放式接口。
- 数字钢卷与实物钢卷交付同步,有利于下游工艺控制产品质量,如高端冷轧钢板主要用于汽车外板,质量要求高、加工难度大,在把钢卷交付给客户的同时,还将依附在实物上的数据一并提交,这种"数字钢卷"不仅包含同批次钢材的共性数据,更承载着厘米级钢卷的用料、工艺、性能等个性化数据,相当于全面采集了钢卷的"工艺指纹",从而帮助汽车制造厂商更好地控制整车质量。
  - 分类快速找出质量统计指标,指导决策。
- 提高收得率:宽度控制,分析得到实物钢卷能达到的控制精度,宽度裕量减少 1mm,将产生可观的经济效益:比如某规格的宽度裕量,统计历史所有同类钢卷,在设定模型、控制策略不变时找出最佳值。

- 提高质量:如平直度控制,分析每米原因,改变控制方法,凸度控制、厚度控制、温度控制等。
  - 提高控制水平:设定值,钢卷号准确跟踪。
  - 改进模型:能够方便地找出共性,优化模型及参数。
- 质量异议处理:数字钢卷记录了厘米级的所有质量数据,不用到用户现场即可快速分析处理,缩短时效降低成本。
- 现有与钢卷有关的数据分散各个系统中,数据的名称也不统一,给这些数据的综合应用带来了很大的困扰,"数字钢卷"将建立一个统一的数据平台,在这个平台上,设备数据、操作记录、能耗数据、缺陷数据、工艺数据、成本数据以及用户信息等一系列的信息被收集成统一的数据。收集上来的数据统一按钢卷号编码,以钢卷为载体,按时序和长度两个维度进行赋值,从而产出与实物钢卷同步的"数字钢卷",为后续设备智能监测、生产智能排程、成本管理、智能点检等深度应用提供数据基础。
- 随着用户对产品质量越来越高的要求,产品质量稳定,性能指标高的将会帅先在全国推行数字钢卷交付,随着信息化的广泛推行,可以预见,提供数字钢卷的实物钢卷将更受欢迎,走在信息化前列将可赢取市场优势,不仅给用户改进产品质量提供便利降低成本,而且大大促进上游持续改进产品质量动能,不仅仅是可追溯,全程数据可供整个产业链分析。

#### 6.2 数字钢卷转换计算

每个单件产品形成一个质量数据记录文件(QDR 文件),触发条件在 Config.csv 中设置。转换工作及长度计算由 QDRServer.exe 根据时序数据文件计算。支持区占有和连续计算两种跟踪方式。将各流程形成的单个质量数据记录文件归集合并,即可获得全流程质量数据文件,为 B/S 和大数据系统提供数据源。

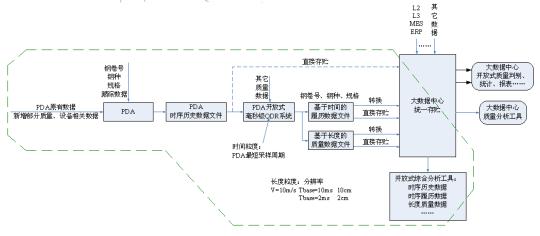



图 6.1 工序质量数据计算

- 基于钢卷号和长度的数据记录
- 毫秒级的时间分辨率

- 厘米级的长度粒度
- 全流程数据整合
- 高效的质量分析工具
- 丰富的分析功能

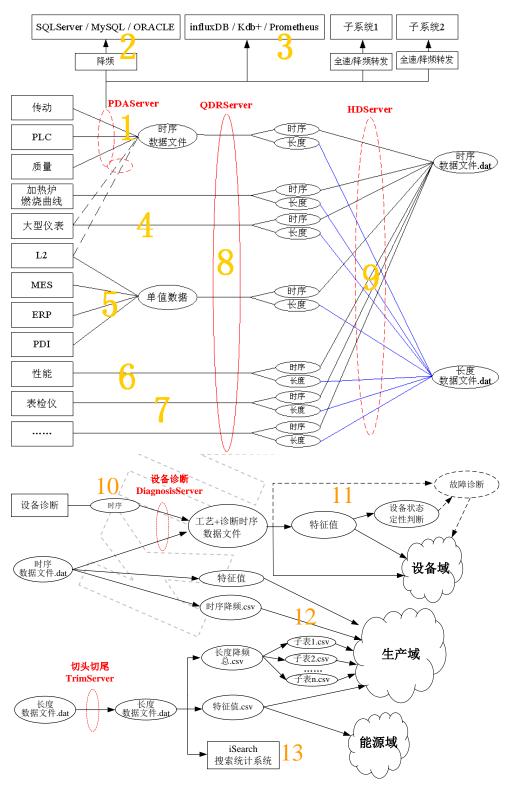



图 6.2 数字钢卷系统架构

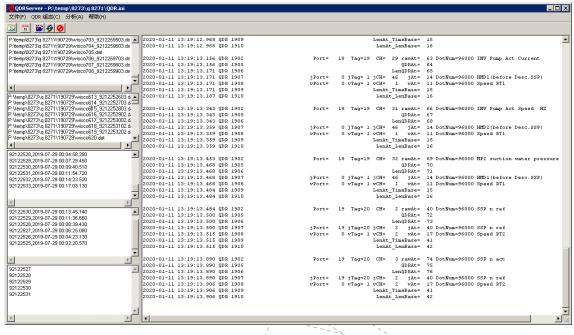



图 6.3 质量数据记录文件转换计算 清理时序数据文件并排序(删除重名 的文件、空文件名行、非法数据文件) 找出完整生产完成的钢卷 所有数据文件 计算完毕? 读与QDR文件名相关的最多5个点 结束 打开一次处理的多个数据文件 读QDR\_Area设置的各区钢卷号 读总的反向信号 QDR.ini多道次 加载logicals.ini ON信号 读每个点、ON、速度、目标值的原始数据 Logicals 完整生产完成的钢卷 连接信号 解析QDR配置文件QDR.ini 全部计算完毕? 单道次质量信号各连接号、通道号计算 单道次质量信号 多道次质量信号 按钢卷号查询钢种、规格 多道次质量信号各连接号、通道号计算 形成部分QDR文件名 所有质量信号检查 计算QDR值、长度QDR值、长度 形成完整的QDR文件名 Logicals 为每个点分配 QDR值、长度QDR值、长度内存块 反向计算 参与各种运算 读Begin信号 QDR计算、统计,按钢卷号生成: 时序数据文件.dat 读End信号 长度数据文件.dat 统计数据文件.csv 分别计算进入生产和完成生产的钢卷号 各类代表性曲线.jpg ON、OFF上升下降沿必须在钢卷号内

图 6.4 质量数据转换流程

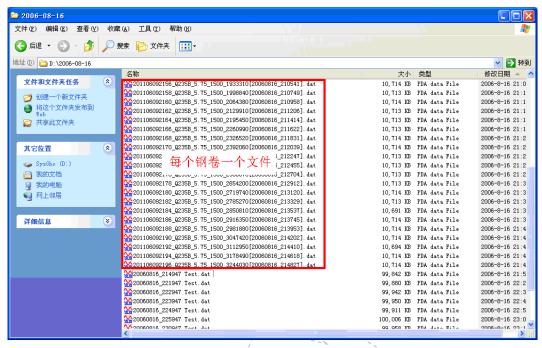



图 6.5 生成的质量数据记录文件

## 6.3 长度数字钢卷、时序数字钢卷、设备数字钢卷、设备诊断数字钢卷

数字钢卷包括长度高分辨率数据文件、时序高频数据文件、设备诊断超高频数据文件及其头部、本体、尾部、全长特征值统计数据和长度、时间序列的降频数据,如下图文件列表。

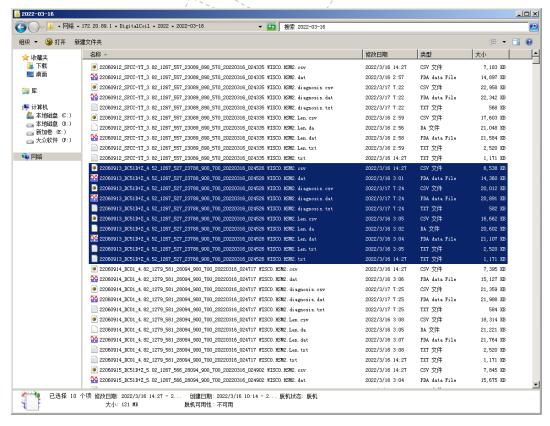



图 6.6 长度、时序、设备、设备诊断数字钢卷文件

设备诊断数字钢卷集成了每块钢头、中、尾的超高频原始振动波形,有新的特征值计算方法和计算参数的调整可以很容易将历史钢卷快速地重新计算一遍,这是基于数据库的几个固定特征值所无法比拟的。

#### 6.4 对齐

长度方向每个信号等份分为 30000 份,同一生产线的不同工艺段、不同的生产 线均天然对齐,同时兼容热轧、冷轧、处理线等全流程; 时序方向按照采样时间对 齐,设备诊断超高频原始数据按采样时间对齐。

## 6.5 实时数字钢卷

粗轧、精轧、卷取各区抛钢后 1 秒内由各区 PDAServer 启动 QDRServer 数字钢卷计算, QDRServer 在 2 秒内计算完成, 1 秒内完成质量、设备、模型精度等的判定, 同时完成曲线显示。

PDAServer 中的启动信号在配置文件 Config.csv 中设置,卷取区各卷取机卸卷信号是或的关系。

曲线显示: 抛钢前显示 2 块历史和当前带钢的实时曲线, QDRServer 计算完成后 1 秒内显示 2 块历史和当前带钢的曲线。

粗轧:出口宽度、中心线偏差、出口温度等末道次曲线。

精轧:厚度、宽度及偏差、FTO、FT7、平直度、凸度实测及目标值等。

卷取: 卷取温度、宽度及偏差、中心线实测和目标值。

辊缝、轧制力、电流、伺服阀信号等可用模板切换。

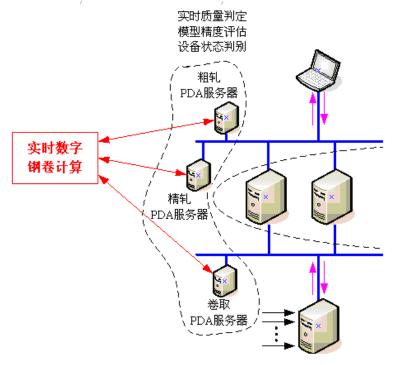



图 6.7 实时数字钢卷系统配置

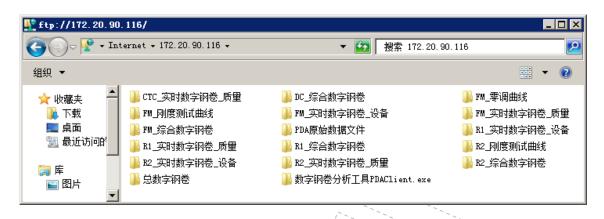



图 6.8 某项目数字钢卷系统目录结构

## 6.6 基础版、标准版、专业版、企业版

基础版: 粗轧、精轧、卷取区 L1 数据(长度+时序)

标准版:基础版 + L2、L3、L4、大型仪表数据(长度+时序)

专业版:标准版 + 搜索系统

企业版:专业版 + 设备诊断(时序)

#### 6.7 高分辨率的实时质量判定和设备状态判别

长度方向判定可以精确到厘米级。

时序方向判定可以精确到毫秒级。

各区抛钢后立即启动本区质量数字钢卷计算,10秒内完成质量判定、模型精度评价、伺服设备状态判别等。-----

#### 6.8 数字钢卷分析工具 - 大数据 BigOffice

从数据仓库中获取数据对任何人来说都是比较困难的一件事情,直观地抽取原始数据、高效地显示原始曲线、便捷地选择分析方法、快速地展示分析结果是工业大数据走入各专业工程师桌面的最后一公里,否则难以落地,庞大的数据会被束之高阁。

大数据时代广大的工程技术人员迫切需要一套 BigOffice。

PDA 正是一套工业毫秒级实时大数据工具,也是大数据的数据采集基础平台。

PDA 把复杂的操作简单化,大量的数学运算高效化,数据的展示图形化。

PDA 为 C/S、B/S 各类架构提供高速数据服务。

PDA 也可以天然兼容秒级或分钟级的数据频度,比如对铁前大数据来说,按天、周或月将炼铁、烧结、焦化的所有数据从数仓中抽取出来保存为 PDA 格式的数据文件,设备、工艺工程师可从各自的角度进行分析,PDA 具备了常规的数学分析方法,大数据专用分析方法可以插件的形式集成进 PDA,这样用户丰富多彩的想法都可以纳入到 PDA 平台中,生态就会逐步建立,PDA 的数据和功能是完全开放透明的。

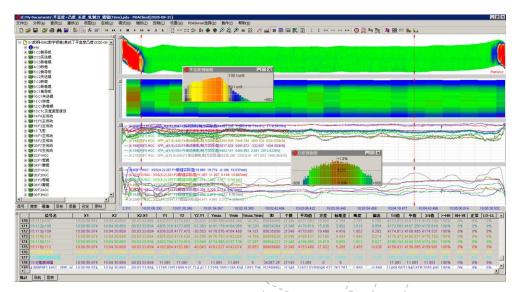



图 6.9 平直度凸度与轧制力和辊缝的关系曲线

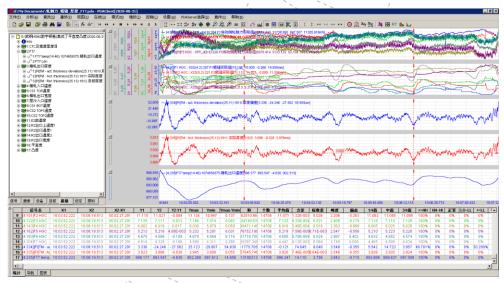



图 6.10 轧制力辊缝与出口厚度及 FT7 的关系

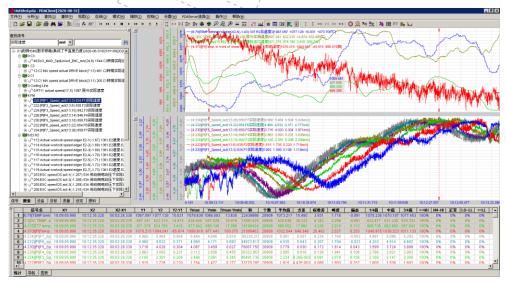



图 6.11 粗轧、精轧、卷取温度与精轧速度的关系曲线

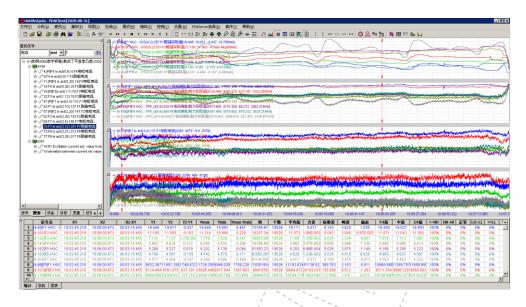



图 6.12 辊缝轧制力与主传动电流的关系曲线

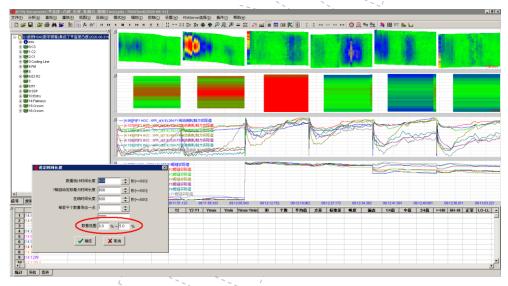



图 6.13 6 块带钢头部板形及曲线

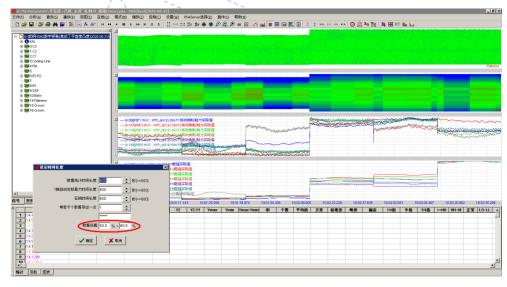



图 6.14 6 块带钢中部板形及曲线

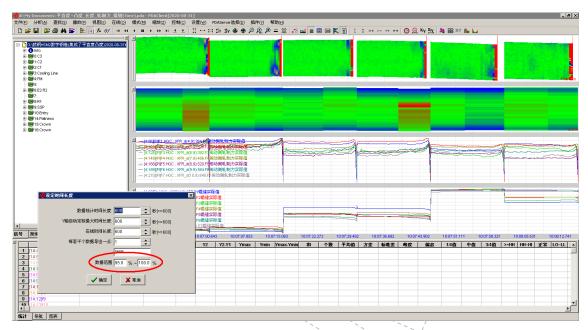



图 6.15 6 块带钢尾部板形及曲线

## 6.9 数字钢卷在质检中的应用

质检人员需要人工检查每个钢卷所有质量指标曲线,每个指标的产品长度计算、时间平移、长度对齐都几乎是手动完成,劳动强度大,内容枯燥。

数字钢卷 iSearch 高速搜索定位钢卷,按 PDI 指标上下限展示所有质量曲线,以三维图形展示实测板形,用分析模板快速切换质检内容。




图 6.16 PDI 指标上下限展示所有质量曲线

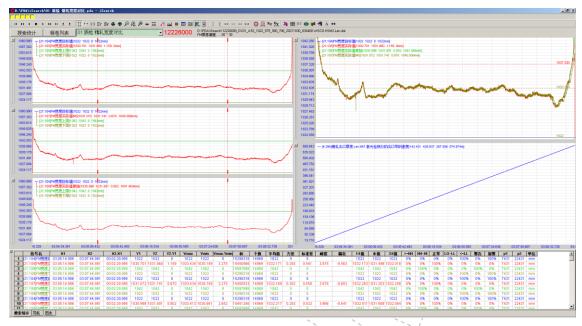



图 6.17 分析模板快速切换质检内容

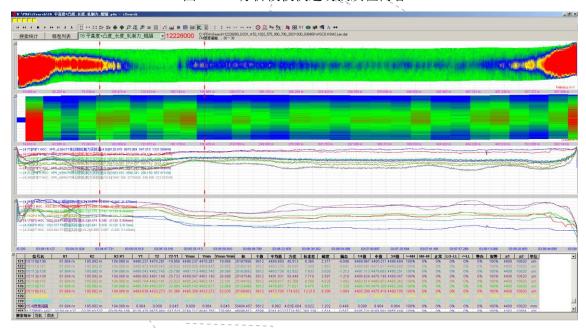



图 6.18 三维图形展示实测板形

## 6.10 数字钢板

宽厚板有传统宽厚板轧机和热连轧+热处理生产方式,其平直度、凸度有着更高的要求,PDA横向支持5000根板形测量曲线,如上图,可以进行局部放大。

中厚板生产线成套设备主要有:立辊轧机、四辊轧机、矫直机、定尺剪、双边剪和剖分剪、快速冷速装置等。其生产工艺流程基本为:连铸坯→上料→加热炉→除鳞→(粗轧)→精轧(控制轧制)→(快速冷却)→热矫直→冷床→检查修磨→切头、切尾、取试样、切定尺和切边→表面检查和清理→标志→收集→入库→发货。



图 6.19 宽厚板生产线及成品

## 6.11 数字钢管

热轧无缝钢管的生产工艺流程包括坯料轧前准备、管坯加热、穿孔、轧制、定减径、钢管冷却、钢管切头尾、分段、矫直、探伤、人工检查、喷标打印、打捆包装等基本工序。当今热轧无缝钢管生产一般主要变形工序有三个:穿孔、轧管和定减径。

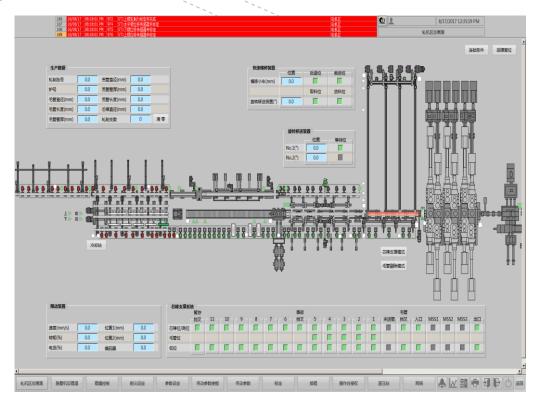



图 6.20 钢管生产流程图

#### 6.12 连铸数字板坯

以火焰切割机切割信号进行板坯分割,长度方向可精确到厘米级、毫米级,能与热轧、冷轧数字钢卷进行长度对齐。



图 6.21 连铸生产工艺流程图

## 6.13 冷轧数字钢卷

支持把一个钢卷分成多个小卷的分卷功能。

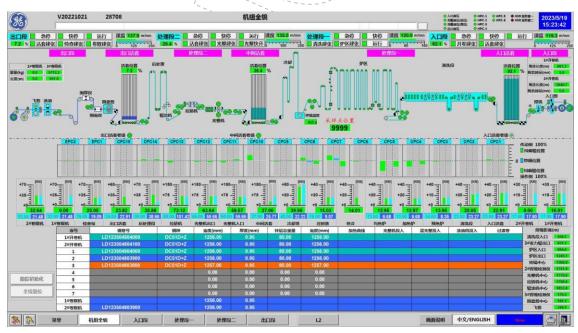



图 6.22 冷轧生产流程图

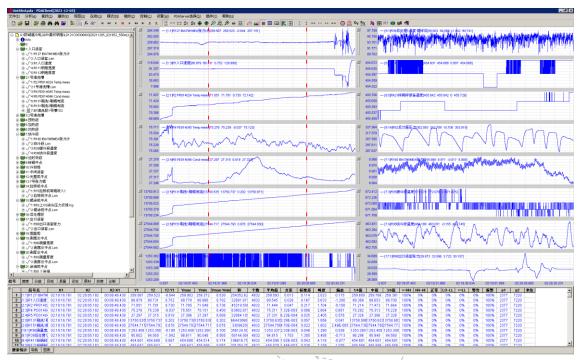



图 6.23 某钢卷工艺数据曲线

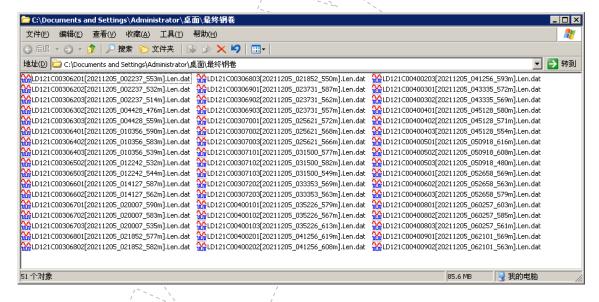



图 6.24 成品数字钢卷列表

# 7 CFS 钢卷快速搜索统计系统

Google、百度、淘宝是民用大数据搜索,其数据多为触发事件型,iSearch 是工业大数据搜索,两者有共同点也有很大区别,后者主要为高频时序及高密转换型。

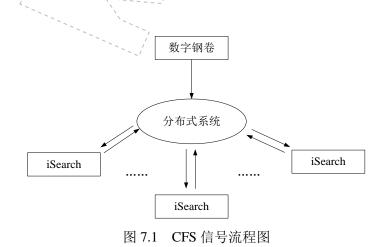
数字钢卷都是毫秒级、厘米级的庞大数据,如果采用传统数据库,在数千万块 钢卷中搜索统计某种指标,运算时间将会是小时级,实际工作中难以接受。

CFS(Coil Fast Search system)搜索统计速度比传统数据库快数百倍,实现秒级完成千万块钢卷中搜索出符合要求的10000块钢,并统计出这10000块钢的某种指标、返回抽取数据和统计结果,例如把20年的所有钢卷搜索统计一次,3秒钟返回结果,配置文件\iSearch\Search\ini。同时支持控制网、办公网、广域网等。

搜索统计结果可保存到本地或远程文件、数据库,也可通过 MQTT 接收,支持文件共享直接打开、FTP、Http 下载,原始高频数据提供下载服务。

## 7.1 工作方式的变化

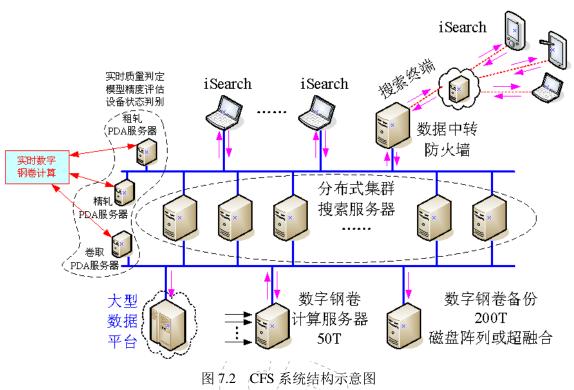
传统的方法是把每天的某种统计计算结果保存下来,需要的时候进行汇总,如果要修改某个统计精度范围,则要把历史数据全部整理计算一次,工作量是巨大的,耗时也长,部分原始数据也可能早已丢失,iSearch 每次都是对原始高频数据进行统计计算,精度范围可依需要每次都可以不同。


#### 7.2 工作平台的变化

由固定的明确的计算转变为以搜索为主的分布式高速计算,每秒浮点运算次数可到百亿次甚至千亿次。

## 7.3 数据频度粒度的变化

由事件触发型、秒级或米级转变为毫秒级、厘米级的数据精度。


#### 7.4 系统结构



PDA 产品样本

#### 7.5 实施方案

iSearch 支持 B/S 和 C/S 架构。



7.6 切片指标搜索统计

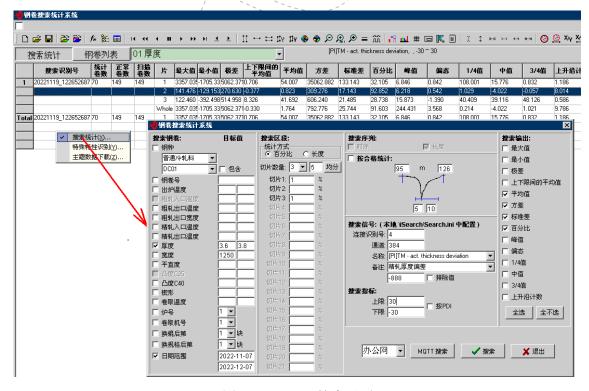



图 7.3 iSearch 搜索界面

#### 7.7 特殊特性识别 - 钢种开发及评价

特殊特性模板由用户定义,任何钢种都可以按各种模板来识别,钢种开发人员 各自建立所负责钢种的统计参数,指导决策。



图 7.4 特殊特性识别搜索-钢种开发

#### 7.8 特殊特性识别 - 指导应切除带钢位置

某些特殊钢种如 BS700MCK2 对温度特别敏感,超标部分应尽可能切除后再交货,避免大量质量异议。/

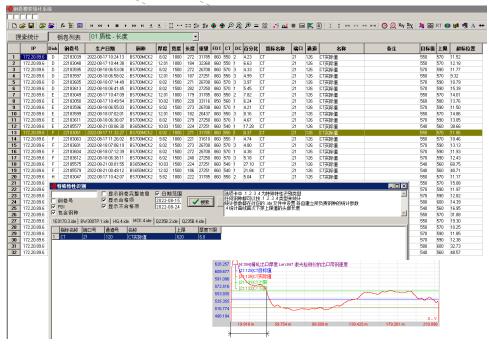



图 7.5 特殊特性识别搜索-指导应切除带钢位置

#### 7.9 搜索下载主题切片原始数据

原始数据是进行分析的重要依据,完整的数字钢卷记录了数千个变量,CFS 搜索系统可以把用户某个主题所关注的钢卷和信号快速生成.dat 文件、.csv 文件并存入数据库供直接分析和下载,一个钢卷对应一个文件。

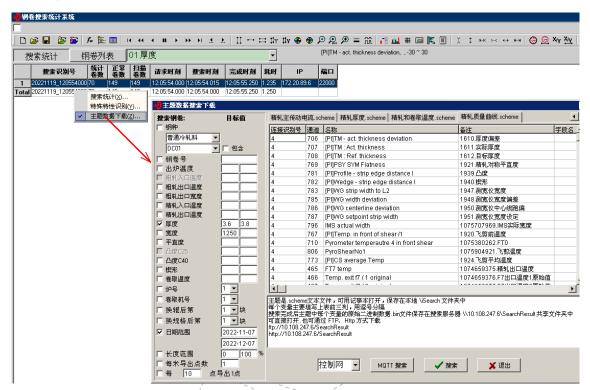
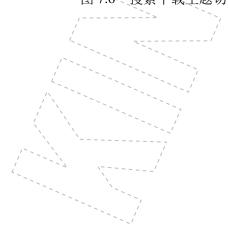
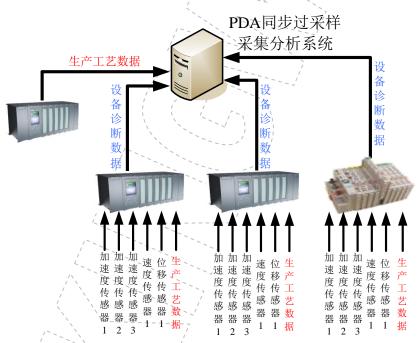




图 7.6 搜索下载主题切片原始数据



## 8 DSO 设备诊断同步过采样系统


#### 8.1 通过 PLC 实现 50us 数据采集

Device diagnostic Synchronous Oversampling system 以PDA 系统为依托。

PDA 系统支持 50kHz、0.05ms 采样周期的数据采集,历史数据全保存,支持实时 FFT 计算和曲线分析,灵活连续选择时间片,可以选用专用 AD 转换板和专用存贮系统,也可以采用标准 PLC 系统完成信号接入,快速实现系统部署。

PLC 系统过采样 AI 模块能实现 16kHz、20kHz 等采样速率,可以满足设备诊断系统加速度传感器、速度传感器、位移传感器等的接入,同时工艺数据如转速、电流、压力、流量、温度等常规采集周期信号也可以准确同步采集,避免了后期繁杂的离线对齐工作。

系统简洁、透明,在线和离线数据可直接接入诊断分析系统,立即得到计算结果,支持 200 万根谱线。



Beckhoff ELM series of measurement technology ELM3xxx Siemens ET200 SP HS AI 6ES7531-7NF10-0AB0 AI 8xU/I HS

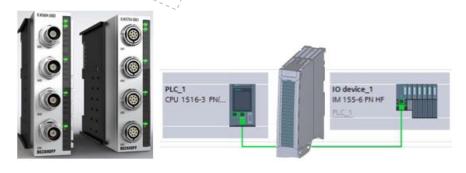



图 8.1 基于 PLC 的设备诊断数据采集系统

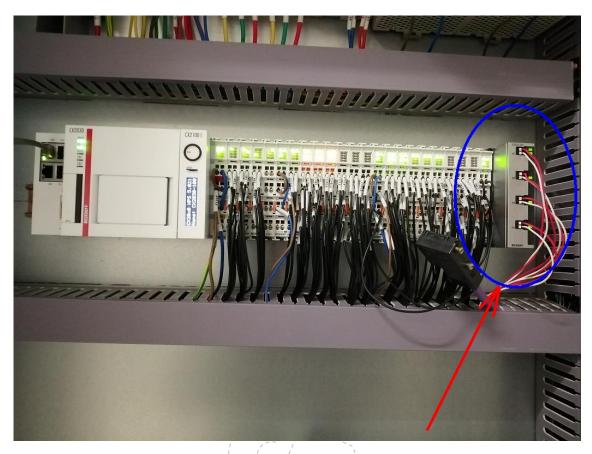



图 8.2 倍福 PLC 过采样数据采集

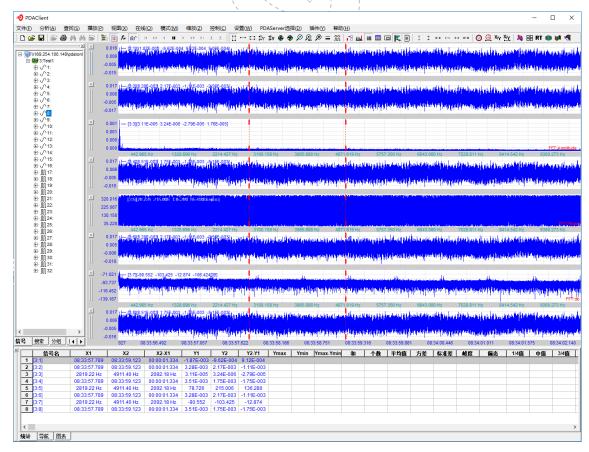



图 8.3 实时 FFT 计算和曲线分析

#### 8.2 通过 PCIe 板卡实现 50us 数据采集

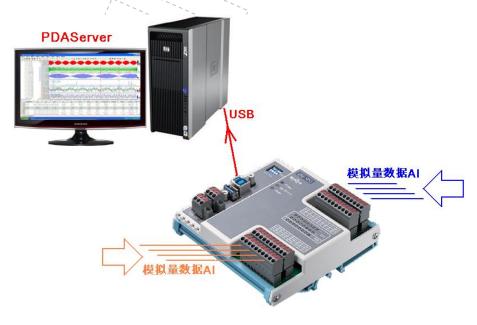
可以同步采集 16 通道信号,分辨率 16 位。数据采集卡插在计算机 PCIe 槽中,PDAServer 每 50us 把 16 通道的数据实时采集一次,实时数据用于实时分析,同时高效压缩到.dat 数据文件中用于离线分析。

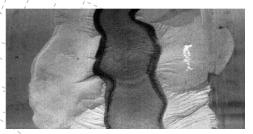


图 8.4 16位 16路数据采集卡

# 8.3 通过接口板实现 10us 的数据采集

可以同步采集 8 通道信号,分辨率 16 位。接口板中 CPU 每 10us 把 8 通道的数据采集一次放入内存缓存区中,每 100ms 将缓冲区中的数据通过 USB 电缆发送到 PDA 计算机,PDAServer 按数据在缓存中的存放约定解析出每通道的数据用于实时分析,并压缩到离线.dat 数据文件。





图 8.5 16 位 8 路数据采集板

# 9 RSA 轧辊剥落预警及快停系统

轧机在轧制生产过程中,轧辊处于复杂的应力状态,轧辊与轧件接触加热、轧辊水冷引起的周期性热应力、轧制负荷引起的接触应力、剪切应力及残余应力等,如轧辊的选材、设计、制作工艺等不合理或轧制时卡钢等造成局部发热引起热冲击都易使轧辊失效,轧辊剥落是轧辊失效的首要形式。

根据轧辊剥落前的工艺数据特征,轧辊剥落预警及快停系统(Roll Spalling Alarm)可以发出预警和快停信号,此时只需要把轧辊正常抽出检查即可,避免轧辊彻底剥落后对其它系统造成影响及长时间的故障处理。









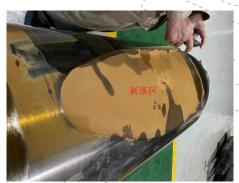







图 9.1 轧辊剥落形式

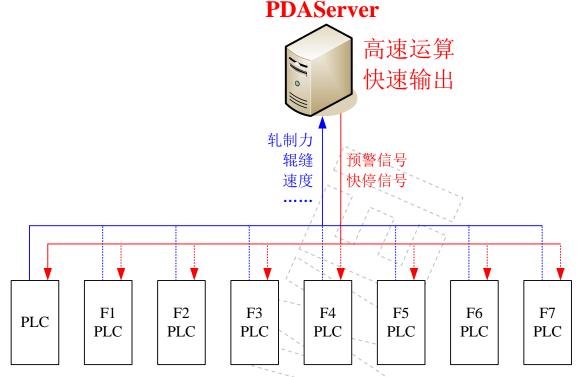



图 9.2 RSA 轧辊剥落预警及快停系统框图

# 10 RCM 辊道电流监测系统

监测辊道状态,可以及时避免带材表面划伤,并且可以判断出辊道的其他情况,最终实现辊道状态预报、主动维修,提高设备上线率,降低故障时间,提高产品表面质量。

热轧层流辊道位于精轧机与卷取机中间,其主要作用是把精轧出来的带钢送到卷取机,同时带钢在层流辊道上运输时,辊道上方会持续喷出冷却水为带钢降温。层流辊道一般总长百余米,具有数百根辊子。数百根辊子由若干个控制器控制,每个控制器控制多个电机,进而控制一组辊道的运转,一组辊道约有 10~30 根辊子不等。由于层流辊道的工作环境水汽大,温度高,使辊道容易过热、润滑脂流失,经常会出现水汽渗入电机,造成电机接地、电机绝缘低、电机卡死等故障,会进一步导致带钢有划痕,严重影响产品质量。

对于电机的监控,通常安排人工肉眼对显示界面上电机的电流进行监测,当发现电流异常变化时,人工报警。由于有多组辊道,每组辊道有多个电机,导致电机数据量巨大,且某些异常导致的电流变化也很难用肉眼发现,人工难以及时发现电机故障。



图 10.1 粗轧辊道



图 10.2 层冷辊道



图 10.3 电流互感器安装示意图

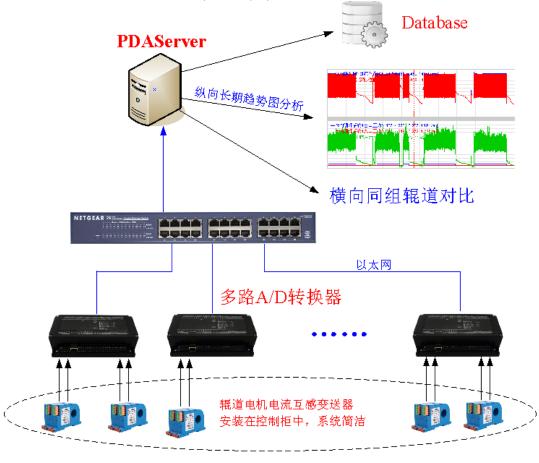



图 10.4 RCM 辊道电流监测系统框图

## 11 HDP 高频高密高速数据平台构建

高频指采样时间,高密指空间,高速指访问平台的速度。

#### 11.1 传统 - 数据平台

基于数据库、基本是秒级。

#### 11.2 高频 - 数据平台

基于高分辨率数据的二次分析和开发有着巨大的市场需求,但是门坎高,现在数据分析基本都是秒级,数据平台升级为高频高密数据(High density data platform)是理想的选择。

平台丰富的分析方法及与业务的紧密联系如果能与高分辨率数据接合,一定可以打造出国内独创的高分高密平台,实现异军突起。

#### 11.3 高频、高密 - 数据平台

作为一种过渡性的平台,可以存贮高频高密数据,对访问速度不作要求,常规平台与 PDA 初步结合很容易搭建。

优点:对平台硬件性能没有特殊要求,可保持不变,几乎没有额外成本,工作量也不大,也没有技术瓶颈。

缺点:访问速度不会有提升。

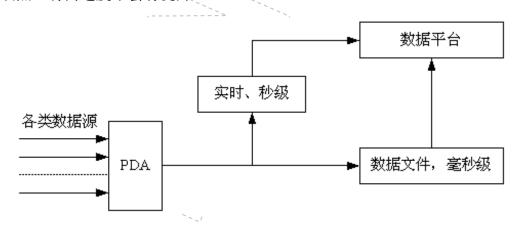



图 11.1 高频高密数据平台数据流

#### 11.4 高频、高密、高速 - 数据平台

这是终级目标,可以存贮高频高密数据,访问速度要求秒级返回结果。

所有应用要确立 3 秒钟能出结果,否则用户体验不好,象 google、百度、淘宝一条搜索命令如果 10 秒钟出结果,就很难推广,这些是民用的,工业高频高密数据平台指标要有更高的追求。

对于秒级分钟级米级的数据如果满足业务需求还是继续保留,但平台性能已经 不一样了,这样的应用不需 1 秒就能出结果。

成本要适合,方案要精选,技术要优化。

#### 11.5 实现方式

各产线安装好 PDA,将为高分辨率数据平台打下坚实的基础,短期内即能形成 厘米级毫秒级甚至微秒级的数据平台,充分利用和发掘 PDA 非常适合处理庞大数据 的超强能力,在国内外市场上将形成较强的竞争优势。

高分高密数据平台是数据分析的现实需求,一旦形成了高分高密高速数据平台将能树立技术优势,秒级的数据平台门坎较低。只要每个项目普及了完全开放的PDA,这样的平台就有基础,就能水到渠成。

#### 11.6 与外界的合作

我国工业控制领域高性能控制器基本被国外垄断,现场总线标准、通讯协议几乎由国外公司掌控,对工业数据进行高速采集面临诸多技术壁垒和国外的高强度重重加密,自主地拿到我们自己工厂的高频高密数据是一种奢望,这种局面迫切须要改变。

多少年来我们的研发团队专注于通讯协议研发、现场总线剖析、高速数据采集、实时数据压缩、海量数据存贮、在线数据分析等技术的探究,倾注了无限的精力和热忱, 孜孜以求, 终于取得了一点点突破, 希望能与大家分享共勉, 对提高我国工业产品产量质量、设备测试、故障诊断、工业 4.0、大数据质量分析有一些微薄的贡献,能够推动广大的工程技术人员共同行动起来彻底解除一个工控领域卡脖子问题。

有些国外的高速数据采集系统现在越来越封闭,层层加密,作为战略合作伙伴 必须要求无条件开放数据接口。

为了大幅降低高频数据采集的成本,我们做了不懈的努力,推出了大客户制、包年制等,为大面积普及 PDA 垫定了基础,这样分摊到每个项目的成本就基本可以忽略,每个项目安装几套实现高频数据应采尽采不会有问题,将为高分辨率数据平台打下坚实的基础。

PDA 只负责基本的数据采集、存贮、分析功能,后面的事情都由平台来做,包括平台与高频数据的快速交换、转换、存贮、分析、计算、展示、应用与平台的交互,PDA 提供底层支持,这将是数据平台的一个里程碑,一场革命,战略意义深远,希望能为国内的平台建设发一丝亮光,这样的平台建得越多越好、越快越好。

# 12 工程业绩及典型项目应用情况

PDA 高速数据采集分析系统在大中型企业得到广泛应用,工程业绩不一一列举。

| 序号 | 工艺设备                                                                                                              |
|----|-------------------------------------------------------------------------------------------------------------------|
| 1  | 硅钢厂 - The silicon steel sheet mill                                                                                |
| 2  | 热轧 - Hot rolling mill                                                                                             |
| 3  | CSP                                                                                                               |
| 4  | 冷轧 - Cold rolling mill                                                                                            |
| 5  | 复合轧机(子弹外壳) - Composite mill (bullet shell)                                                                        |
| 6  | 炼钢、连铸 - Steelmaking, continuous casting                                                                           |
| 7  | 钢管 - Steel pipe                                                                                                   |
| 8  | 加热炉 - Heating furnace                                                                                             |
| 9  | 平整机 - Temper mill                                                                                                 |
| 10 | 实验室 - Laboratory                                                                                                  |
| 11 | 闪光焊机 - Flash butt welding machine                                                                                 |
| 12 | 电池能耗曲线测量 - Measurement of battery consumption curve                                                               |
| 13 | 气力输送实验 - Pneumatic conveying experiment                                                                           |
| 14 | 水泥 - Cement                                                                                                       |
| 15 | 能源管理 - Energy management                                                                                          |
| 16 | 数据远传服务 - Data telemetering service                                                                                |
| 17 | 数据采集系统改造 - Reforming of Data Acquisition System                                                                   |
| 18 | 啤酒厂信息化系统—Brewery information system                                                                               |
| 19 | 啤酒厂点图分析 - Point Map Analysis System of a Brewery                                                                  |
| 20 | 啤酒厂 CO <sub>2</sub> 回收预测及实测数据分析 - Data analysis for Brewery CO <sub>2</sub> recovery prediction and measured data |
| 21 | 主传动 SL150 - Main drive SL150                                                                                      |
| 22 | 质量管理及数字钢卷 - Quality management and digital coil                                                                   |
| 23 | 无人机车及智能铁水运输系统 - Unmanned locomotive and intelligent iron metal transportation system                              |
| 24 | 全天候少人化码头。All-weather unmanned wharf                                                                               |
| 25 | 电液伺服控制系统 - Electro hydraulic servo control system                                                                 |
| 26 | 汽车监控系统 - Automobile monitoring system                                                                             |
| 27 | 热轧厂数字钢卷系统 - HSM digital coil system                                                                               |
| 28 | 冷轧厂数字钢卷系统 - CSM digital coil system                                                                               |
| 29 | 公司级主辅传动系统数据采集综合方案                                                                                                 |
| 30 | IGBT 柔性直流斩波电源 - 绿色智能超级电弧炉                                                                                         |
| 31 | MPT 轧制节奏跟踪 - Mill Pacing Tracing                                                                                  |
| 32 |                                                                                                                   |

## 12.1 某热轧厂平整机 PDA 高速数据采集分析系统

图 12.1 为某平整机高速数据采集系统,采样周期 4ms,2011.3.8 日平整机偶尔 出现振荡,不能生产,经历史曲线分析(下图中红色圈中)发现压力环参数设置不 太合适,调整后正常。

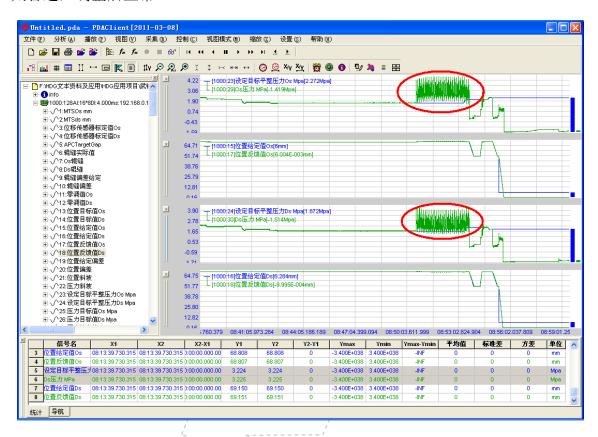



图 12.1 PDA 系统在平整机中的应用

#### 12.2 某钢厂特厚板坯连铸结晶器液压振动 PDA 系统

结晶器是连铸机的核心设备,与机械振动相比液压振动能有效减小铸坯与结晶器铜管间的摩擦阻力,从而提高铸坯表面质量,提高拉速,增加产量;采用板弹簧导向,无机械磨损,设备维护工作量和费用大大减少;采用高精度的预应力板簧导向,各向的偏差小;在线可调振幅、振频和波形,实现正弦和非正弦振动,适应各钢种的浇注工艺要求。

图 12.2 和图 12.3 记录了起停振的过程,调试人员可依据波形调节各种参数,使反馈与给定尽可能快速跟随而超调也很小,有时由于液压系统油不太干净致使伺服阀出现堵塞都能从曲线上直观分析出来,可以快速找出原因。一般生产工人发现停振后都可将历史曲线调出来,是信号干扰、摩擦力太大、油路堵塞还是操作不规范都可定量分析。

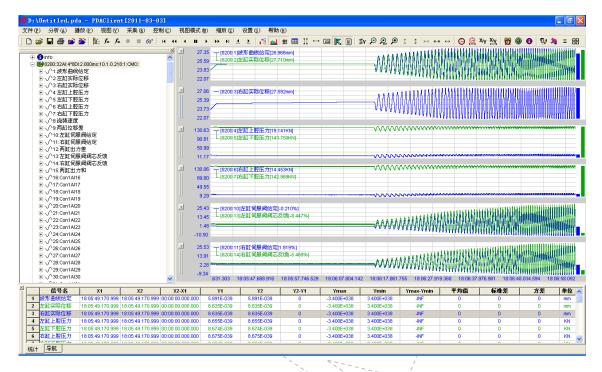



图 12.2 结晶器液压振动启动过程曲线

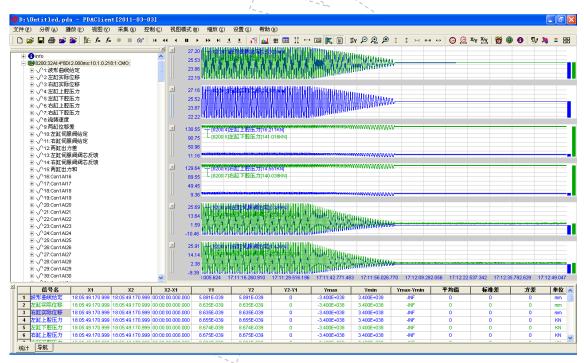



图 12.3 结晶器液压振动停止过程曲线

图 12.4 为正常生产时的振动曲线,采样周期为 2ms,根据曲线可以指导调整控制系统参数、判断系统工作状态、判别故障原因,控制系统为 S7-400+FM458。

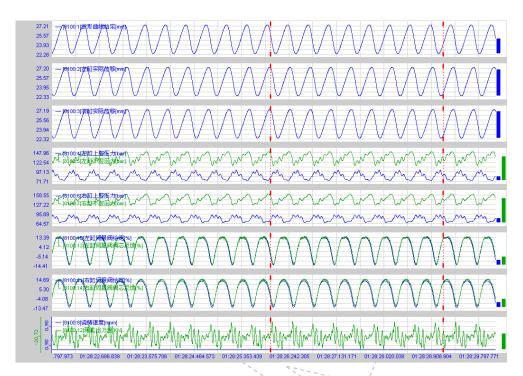



图 12.4 某特厚板连铸结晶器液压振动曲线

## 12.3 某 1700mm 热轧厂 PDA 高速数据采集系统

图 12.5 为某热轧 PDA 系统曲线,采集 9200 多点,采样周期 1.95ms,替代了控制系统改造前 3 套某德国品牌 PDA 系统,性能大幅提升,操作更简洁。

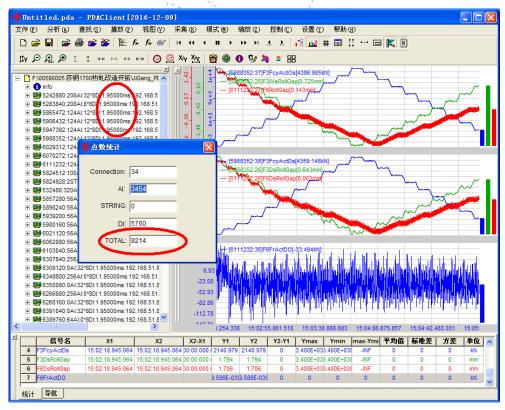



图 12.5 某 1700mm 热轧 PDA 系统

#### 12.4 某大型 AGC 油缸厂性能测试系统

图 12.6 为某油缸厂 AGC 缸出厂滞环测试曲线,滞环反映了液压缸摩擦力等性能指标,采样周期 0.5ms,可根据测量曲线直接生成报表。

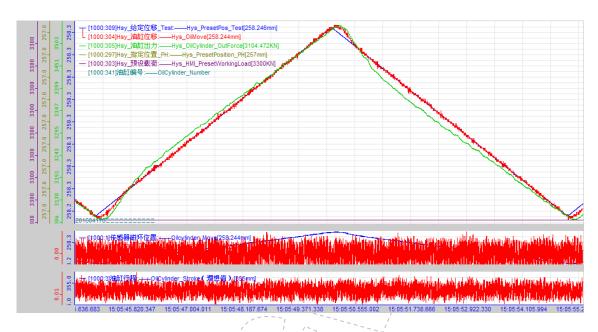



图 12.6 某大型 AGC 油缸滞环测试曲线

# 12.5 某气力输送实验数据测试系统

图 12.7 为某气力输送实验数据曲线,支持复杂数学公式,可同时打开一周的实验数据,分析规律。

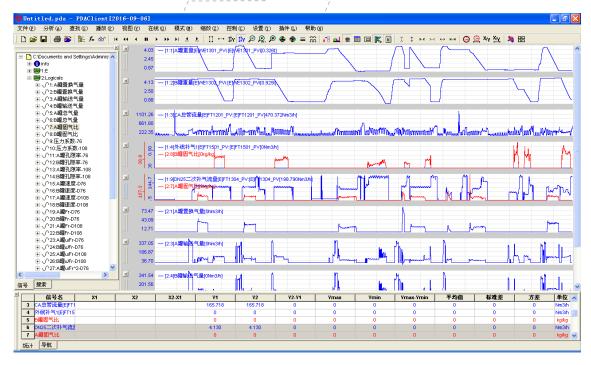



图 12.7 某气力输送实验数据曲线

#### 12.6 某钢管厂 PDA 数据采集系统

图 12.8 为某钢管厂 PDA 系统,采集 9906 点,采集周期为 2ms,PLC 为西门子 S7-1500 和 TDC,采集的控制功能区有:液压孔型控制系统、轧机主传动、轧机辅传动、轧机区硬件 IO、轧机区控制逻辑、张减机主传动、张减机冷床区辅传动、张减机冷床区硬件 IO、张减机冷床区逻辑。

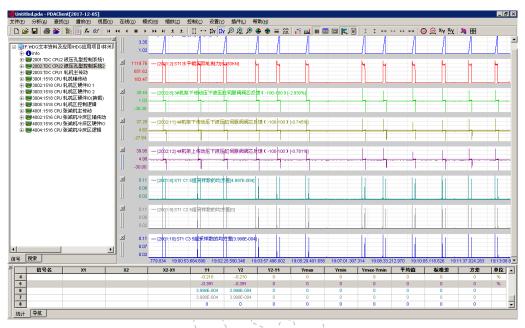



图 12.8 某钢管厂 PDA 系统

自定义函数 RisingEdgeInterval 计算每根钢管的轧制时间。

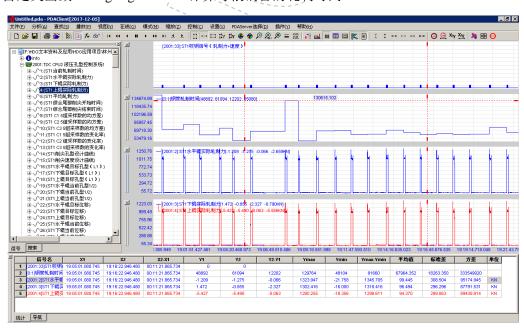



图 12.9 自定义函数计算每根钢管的轧制时间

### 12.7 某水泥厂电能管理系统

图 12.10~图 12.13 为某水泥厂电能管理系统数百台电表电能统计报表,节能减

排是降低成本的有效手段, PDA 提供了对设备能耗特点进行综合分析的方法, 也可 作为日常管理工具,报表栏目是根据.pda 分析策略动态设定的。



图 12.10 全厂空压机用电量统计报表



图 12.11 总降分表总和统计报表



---图-12.12--水泥磨电能统计表



窑头煤磨设备1电能统计报表 图 12.13

北京爱博精电合资的 Acuvim II 系列三相网络电力仪表功能较完善: 全参数测 量,双向四象限 0.2S 级电能计量;电能质量事件记录和波形记录功能,为事故追 忆提供技术依据; RS485、PROFIBUS、以太网,支持 Web 浏览,定时邮件发送, ModbusTcp; 提供全参数的定时记录功能; 实测量每周波通讯刷新,适用于高响应速度要求的场合。



图 12.14 一种全参数电能表

## 12.8 某铁路数据远传系统

某铁路站控制系统为 S7-200smart,铁路局需要采集其中的信号,但只支持 ModbusTcp 协议, S7-200smart 的 ModbusTcp 协议比较麻烦,PDAServer 通过 S7 协议与 PLC 通讯,采集的实时数据映射到 Modbus 寄存器中,铁路局与 ModbusTcpServer 通讯即可,图12.15 为某铁路数据远传系统示意图。

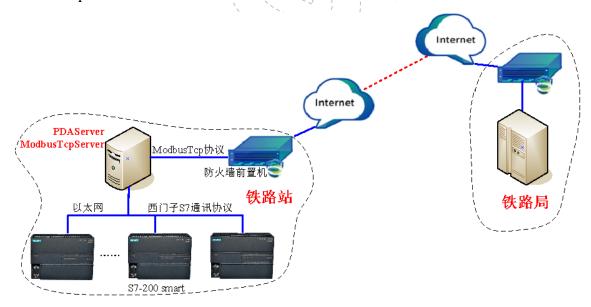



图 12.15 某铁路站局 PDA 数据远传网络示意图

# 12.9 某机组作业时间数据采集统计系统

图 12.16 为某机组作业时间统计报表,分日报月报班报。

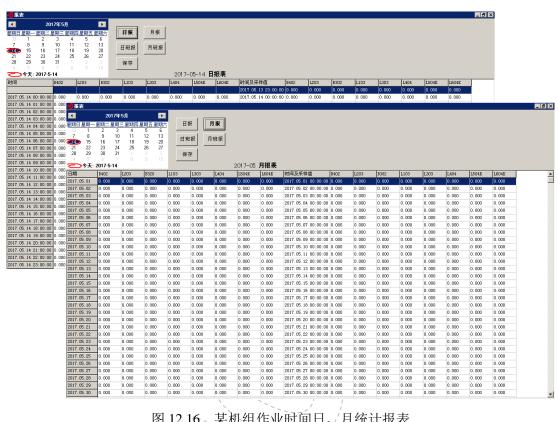



图 12.16 某机组作业时间日、月统计报表

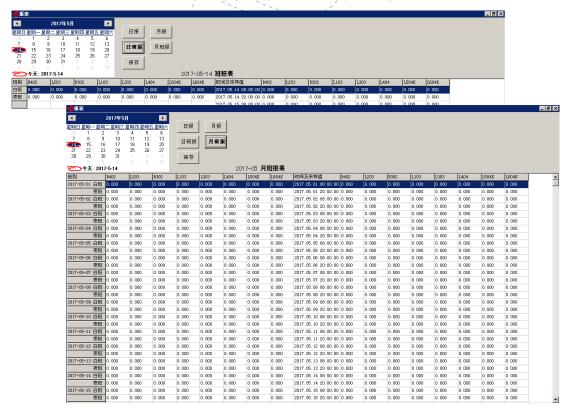



图 12.17 某机组作业时间日、月班统计报表

#### 12.10 动态运行记录及抄表系统

根据\BigData 中的分析策略文件(.pda)自动生成报表,默认记录时间间隔为 1 秒,按分钟统计累加值(Config.csv 中 I=1)或累加值平均值(I=2)或瞬时值(I<>1 或 2),每小时求一个值。Bool 和字符串只求瞬时值。

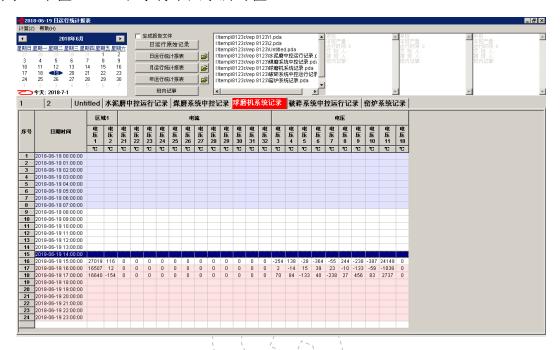



图 12.18 某动态运行记录统计报表

# 12.11 某热连轧主传动 SL150

SL150 是西门子新一代大功率交-交变频主传动系统,核心单元为 Simotion D445(或 D455)模板、Sinamics CU320模板,PDA 系统通过标准以太网和 Profinet 采集,数据刷新周期 1ms。

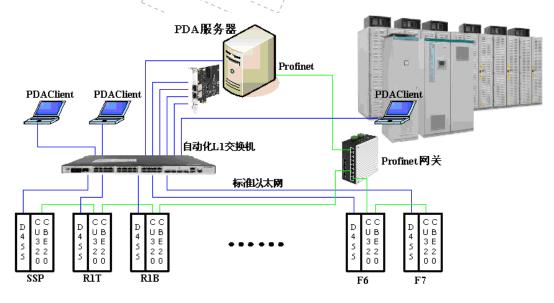



图 12.19 主传动数据采集网络图

#### 12.12 数据采集系统改造

某些数据采集系统采用了一些专用的设备、专用的通讯网络、专用的服务器,系统异常复杂,价格昂贵,一旦出故障,恢复很困难,下图为某钢厂用 PDA 系统进行了改造性替换。

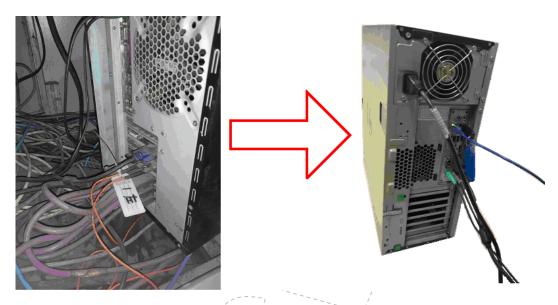



图 12.20 某数据采集系统改造性替换

## 12.13 统计过程控制 SPC

SPC(Statistical Process Control)的宗旨: 预防控制, 防患于未然。

SPC 的主要作用:对生产过程实时监控预警,实现对异常波动及时采取措施,实时改进;判断过程波动是随机波动还是异常波动;实现过程稳定受控。

对当前显示区第 1 条曲线 x1 和 x2 间的数据进行 SPC 指标计算。

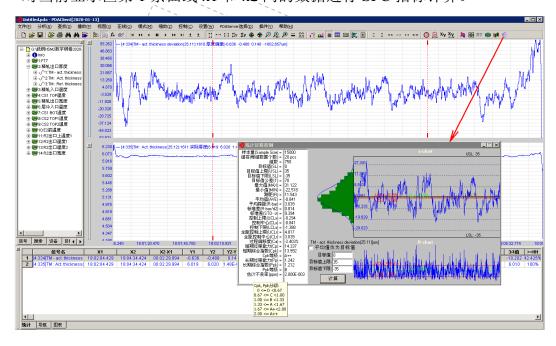



图 12.21 统计过程控制 SPC 各种指标

### 12.14 某啤酒厂数据采集及点图分析系统

采集 30 多台 PLC 和电表数据。点图有 CO2 回收及消耗、低压电度表、高压电度表、水量、压缩空气、蒸汽等。

秒级数据升迁到 SQLServer, 毫秒级数据升迁到 influxDB, 所有表均自动创建, 其结构与 PDA 系统一致。

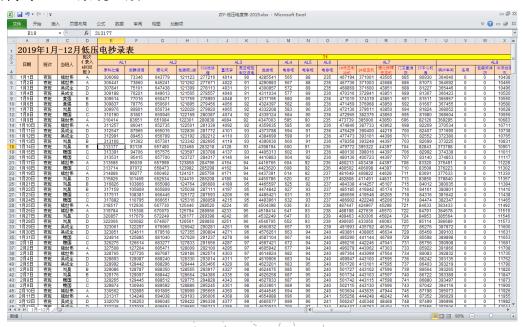



图 12.22 啤酒厂数据采集曲线

## 12.15 某啤酒厂 CO2 回收预测及实测数据分析系统

根据母液和发酵罐数据即可预测 CO<sub>2</sub> 回收曲线,与实时曲线作比对分析,实现 CO<sub>2</sub> 及啤酒的均衡稳产、高产。

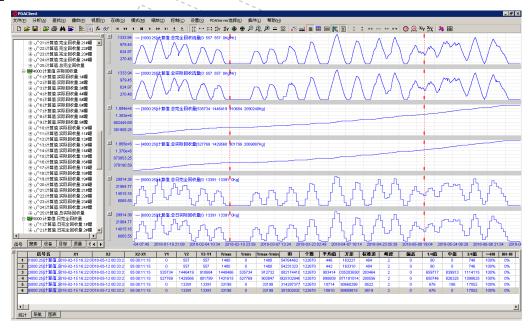



图 12.23 CO2 回收预测曲线

### 12.16 无人机车及智能铁水运输系统

包括无人驾驶、摘挂钩、驻车防溜、定位、脱轨检测、环境感知、设备保障、行车调度、远程集控等子系统,任何故障都可能会引起灾难性的后果。

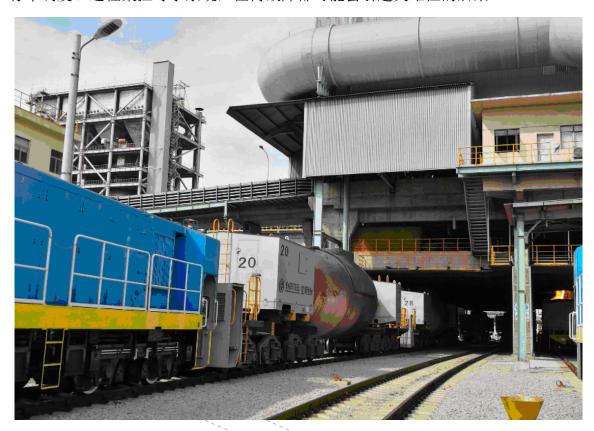



图 12.24 机车作业




图 12.25 机车运行状态

# 12.17 全天候码头少人化

包括港机无人驾驶、钢卷自动吊运、码头智能化管控等子系统,将作业人员从繁重危险的环境中解放出来。

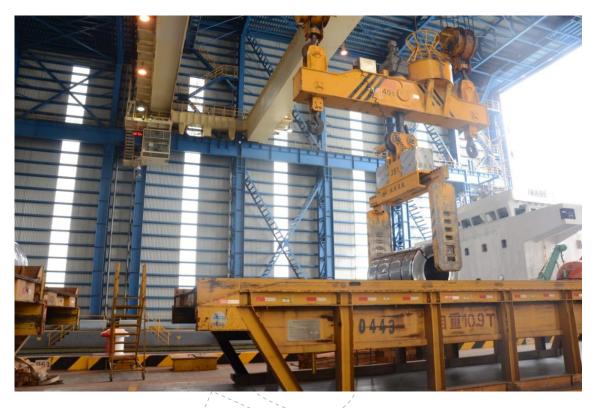



图 12.26 码头钢卷自动吊运

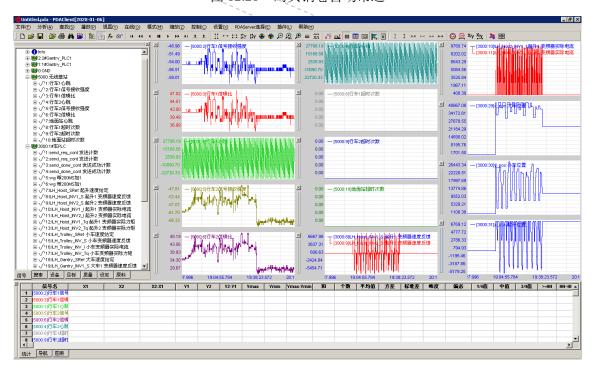



图 12.27 漏波电缆无线信号强度及信噪比

#### 12.18 电液伺服控制系统

由伺服电机驱动液压缸作高精度闭环控制,定位精度可到 um 级,取消伺服阀、 大型液压站,系统成本低、维护量小、可靠性高。

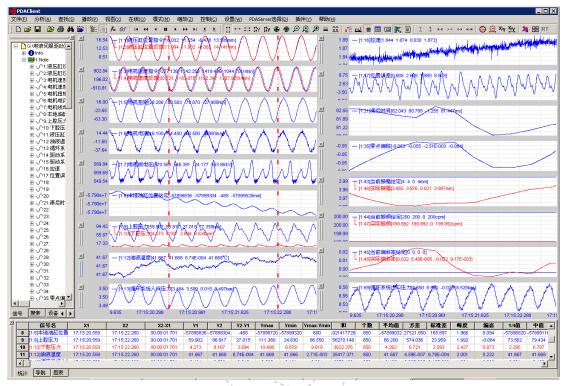



图 12.28 毫秒级数据曲线

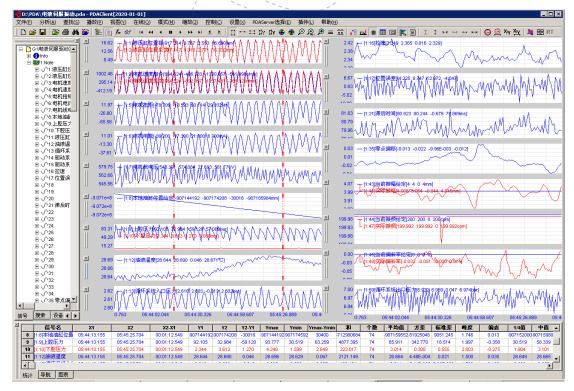



图 12.29 秒级天数据

# 12.19 汽车监控系统

汽车采用 CAN 总线控制, PDA 支持标准帧和扩展帧, 可以高速采集所有帧 ID, 是汽车监控、开发、无人驾驶调试的有效工具。









图 12.30 基于 CAN 总线的各类汽车

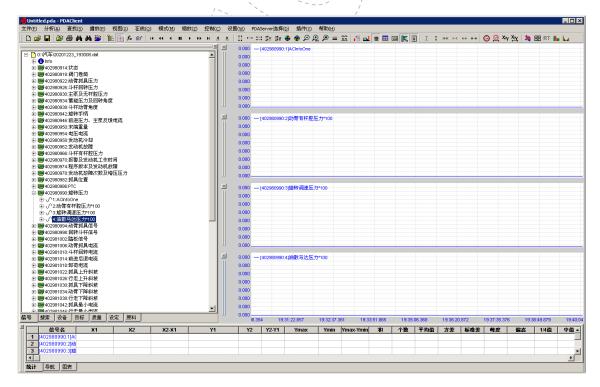
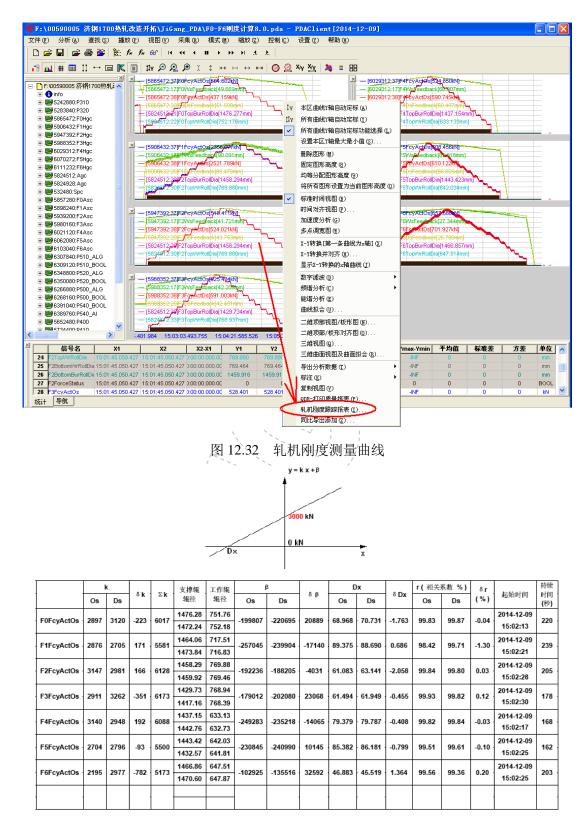
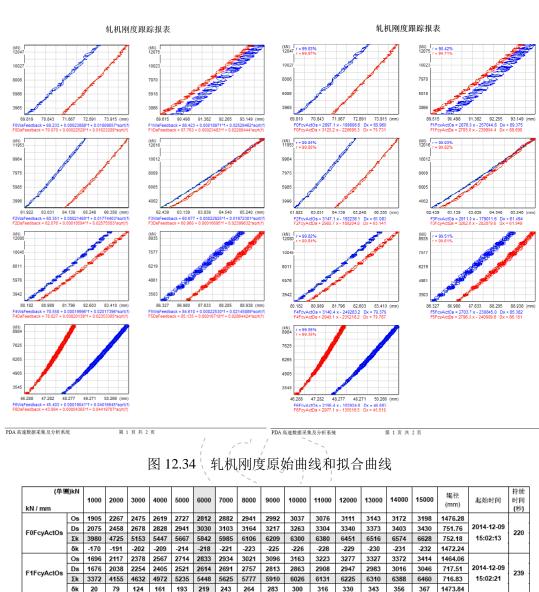




图 12.31 基于 CAN 的汽车数据采集


### 12.20 轧机刚度跟踪报表



PDA 高速数据采集及分析系统

第2页共2页

图 12.33 轧机刚度线性拟合结果



| (单领           | l)kN |      |      |      |      |      |      |      |       |       |       |       |       |       |       |       | 辊径      |                | 持续       |
|---------------|------|------|------|------|------|------|------|------|-------|-------|-------|-------|-------|-------|-------|-------|---------|----------------|----------|
| kN / mm       |      | 1000 | 2000 | 3000 | 4000 | 5000 | 6000 | 7000 | 8000  | 9000  | 10000 | 11000 | 12000 | 13000 | 14000 | 15000 | (mm)    | 起始时间           | 时(利      |
|               | Os   | 1905 | 2267 | 2475 | 2619 | 2727 | 2812 | 2882 | 2941  | 2992  | 3037  | 3076  | 3111  | 3143  | 3172  | 3198  | 1476.28 |                |          |
| F0FcvActOs    | Ds   | 2075 | 2458 | 2678 | 2828 | 2941 | 3030 | 3103 | 3164  | 3217  | 3263  | 3304  | 3340  | 3373  | 3403  | 3430  | 751.76  | 2014-12-09     | 2        |
| FUFCYACIOS    | Σk   | 3980 | 4725 | 5153 | 5447 | 5667 | 5842 | 5985 | 6106  | 6209  | 6300  | 6380  | 6451  | 6516  | 6574  | 6628  | 752.18  | 15:02:13       | <b> </b> |
|               | δk   | -170 | -191 | -202 | -209 | -214 | -218 | -221 | -223  | -225  | -226  | -228  | -229  | -230  | -231  | -232  | 1472.24 | 1              | 1        |
|               | Os   | 1696 | 2117 | 2378 | 2567 | 2714 | 2833 | 2934 | 3021  | 3096  | 3163  | 3223  | 3277  | 3327  | 3372  | 3414  | 1464.06 |                | Г        |
| F1FcvActOs    | Ds   | 1676 | 2038 | 2254 | 2405 | 2521 | 2614 | 2691 | 2757  | 2813  | 2863  | 2908  | 2947  | 2983  | 3016  | 3046  | 717.51  | 2014-12-09     | ] 2      |
| r ir cyacios  | Σk   | 3372 | 4155 | 4632 | 4972 | 5235 | 5448 | 5625 | 5777  | 5910  | 6026  | 6131  | 6225  | 6310  | 6388  | 6460  | 716.83  | 15:02:21       | ] 1      |
|               | δk   | 20   | 79   | 124  | 161  | 193  | 219  | 243  | 264   | 283   | 300   | 316   | 330   | 343   | 356   | 367   | 1473.84 |                |          |
|               | Os   | 2020 | 2421 | 2655 | 2818 | 2941 | 3038 | 3119 | 3187  | 3245  | 3297  | 3342  | 3383  | 3420  | 3453  | 3484  | 1458.29 |                | Γ        |
| F2FcyActOs    | Ds   | 1686 | 2110 | 2375 | 2567 | 2717 | 2839 | 2942 | 3031  | 3109  | 3177  | 3239  | 3295  | 3346  | 3392  | 3435  | 769.88  | 2014-12-09     | ١,       |
| 1 ZI CYACIOS  | Σk   | 3705 | 4532 | 5030 | 5385 | 5657 | 5878 | 6061 | 6218  | 6354  | 6474  | 6581  | 6678  | 6766  | 6846  | 6919  | 769.46  | 15:02:28       | ] 1      |
|               | δk   | 334  | 311  | 281  | 251  | 224  | 199  | 176  | 156   | 137   | 119   | 103   | 88    | 74    | 61    | 48    | 1459.92 |                | L        |
|               | Os   | 1848 | 2223 | 2443 | 2596 | 2712 | 2805 | 2881 | 2945  | 3001  | 3050  | 3093  | 3132  | 3167  | 3199  | 3228  | 1429.73 | 2014-12-09 178 |          |
| F3FcyActOs    | Ds   | 1830 | 2298 | 2591 | 2804 | 2971 | 3107 | 3222 | 3321  | 3408  | 3485  | 3554  | 3617  | 3674  | 3726  | 3775  | 768.94  |                | ١,       |
|               | Σk   | 3678 | 4521 | 5034 | 5400 | 5683 | 5912 | 6103 | 6267  | 6409  | 6535  | 6648  | 6749  | 6841  | 6925  | 7003  | 768.39  |                |          |
|               | δk   | 18   | -74  | -147 | -208 | -259 | -303 | -341 | -376  | -407  | -435  | -461  | -485  | -507  | -527  | -547  | 1417.16 |                |          |
|               | Os   | 1927 | 2350 | 2603 | 2782 | 2919 | 3029 | 3120 | 3198  | 3265  | 3324  | 3377  | 3424  | 3467  | 3506  | 3542  | 1437.15 |                |          |
| F4FcvActOs    | Ds   | 1744 | 2153 | 2403 | 2581 | 2719 | 2830 | 2924 | 3003  | 3073  | 3134  | 3189  | 3238  | 3283  | 3324  | 3362  | 633.13  | 2014-12-09     | ١,       |
| 1 41 cyricios | Σk   | 3671 | 4503 | 5006 | 5363 | 5638 | 5859 | 6044 | 6201  | 6338  | 6458  | 6566  | 6662  | 6750  | 6830  | 6904  | 632.73  | 15:02:17       | ]        |
|               | δk   | 183  | 197  | 201  | 201  | 200  | 198  | 196  | 194   | 192   | 190   | 188   | 186   | 184   | 182   | 180   | 1442.76 |                | L        |
|               | Os   | 1771 | 2150 | 2374 | 2532 | 2652 | 2749 | 2829 | 2896  | 2955  | 3007  | 3053  | 3094  | 3131  | 3165  | 3196  | 1443.42 |                |          |
| F5FcyActOs    | Ds   | 1613 | 2052 | 2333 | 2540 | 2705 | 2840 | 2955 | 3055  | 3143  | 3222  | 3292  | 3357  | 3415  | 3469  | 3520  | 642.03  | 2014-12-09     |          |
| ,,,,,,,,,,    | Σk   | 3384 | 4201 | 4707 | 5072 | 5357 | 5589 | 5784 | 5952  | 6098  | 6228  | 6345  | 6450  | 6546  | 6634  | 6716  | 641.81  | 15:02:25       | ] '      |
|               | δk   | 159  | 98   | 41   | -8   | -52  | -92  | -127 | -159  | -188  | -215  | -240  | -263  | -284  | -305  | -324  | 1432.57 |                | L        |
|               | Os   | 1211 | 1564 | 1795 | 1969 | 2108 | 2224 | 2323 | 2410  | 2487  | 2556  | 2619  | 2676  | 2728  | 2777  | 2822  | 1466.86 |                | [        |
| F6FcyActOs    | Ds   | 1347 | 1859 | 2237 | 2544 | 2808 | 3040 | 3249 | 3440  | 3615  | 3779  | 3932  | 4075  | 4211  | 4340  | 4463  | 647.51  | 2014-12-09     | ١,       |
| ,,,,,,,,,     | Σk   | 2558 | 3423 | 4032 | 4513 | 4915 | 5264 | 5572 | 5850  | 6102  | 6335  | 6550  | 6751  | 6939  | 7117  | 7284  | 647.87  | 15:02:25       | 1.       |
|               | δk   | -135 | -296 | -441 | -575 | -700 | -816 | -926 | -1030 | -1129 | -1223 | -1313 | -1400 | -1483 | -1563 | -1641 | 1470.60 |                | L        |
|               | Os   |      |      |      |      |      |      |      |       |       |       |       |       |       |       |       |         |                |          |
|               | Ds   |      |      |      |      |      |      |      |       |       |       |       |       |       |       |       |         |                |          |
|               | Σk   |      |      |      |      |      |      |      |       |       |       |       |       |       |       |       |         |                |          |
|               | δk   |      |      |      |      |      |      |      |       |       |       |       |       |       |       |       |         |                |          |

PDA高速数据采集及分析系统

第2页共2页

图 12.35 各种轧制力下计算的刚度

| L-+# |                                      | LC系数a                                                   | LC系数b                                                               | LC系数c                    | PT系数a          | PT系数b            | PT系数c              | 刚度原始值         |                                               |
|------|--------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------|--------------------------|----------------|------------------|--------------------|---------------|-----------------------------------------------|
| 类    | total                                |                                                         |                                                                     |                          |                |                  | 891.5              | 別及原始且         | _                                             |
|      |                                      | 42.73<br>22.95                                          | -543.9                                                              | 993.9                    | 36.68<br>16.32 | -482.7<br>-242.4 | 482.6              |               |                                               |
|      | DS                                   |                                                         | -272.7                                                              | 509.4<br>19.78           | 20.36          | -242.4           |                    |               |                                               |
| 栗    | WS                                   | 19.78                                                   |                                                                     |                          | 20.36<br>PT関度  |                  | 408.8              |               | ]                                             |
|      | 分析                                   | 轧制力设定                                                   |                                                                     | <b>夏评价</b>               |                |                  |                    |               | -LC = 993.9 - 543.9 F6-GAP + 42.73 F6-GAP**2  |
|      |                                      | 2000                                                    |                                                                     | LC计算刚度                   | 计算辊缝           | PT计算刚度           | R-Sq = 99.99       | 70            |                                               |
|      |                                      | 2000                                                    | -1.639                                                              | 651.14                   | -1.994         | 598.35           | 回归拟合值.             | 6-FORCE-LC-DS | S = 509.4 - 272.7 F6-GAP-DS + 22.95 F6-GAP-DS |
|      | Total-Force/T                        | 1500                                                    | -0.871                                                              | 581.59                   | -1.159         | 533.31           | R-Sq = 99.9        | 96            |                                               |
|      |                                      | 1000                                                    | -0.011                                                              | 502.33                   | -0.221         | 458.96           | Emmo/#             |               |                                               |
| 度    |                                      | 500                                                     | 0.984                                                               | \                        | 0.868          | \                | 四归以合值, R-Sq = 99.9 |               | 'S = 484.2 - 271.7 F6-GAP-WS + 19.78 F6-GAP-W |
| 算    |                                      | 1000                                                    | -1.587                                                              | 328.06                   | -1.893         | 290.13           | K-Sq = 99.9        | 70            | 1                                             |
| 块    | DS                                   | 750                                                     | -0.825                                                              | 290.84                   | -1.032         | 260.40           | 回归拟合值, F           | 6-TOTALFORCE  | -PT = 891.5 - 482.7 F6-GAP + 36.68 F6-GAP**2  |
|      |                                      | 500                                                     | 0.035                                                               | 247.98                   | -0.071         | 226.74           | R-Sq = 99.9        | %             |                                               |
|      |                                      | 250                                                     | 1.043                                                               | \                        | 1.031          | \                | 同归拟会值              | F6-FORCE-PT-D | S = 482.6 - 242.4 F6-GAP-DS + 16.32 F6-GAP-DS |
|      |                                      | 1000                                                    | -2.967                                                              | 375.92                   | -2.095         | 308.39           | R-Sq = 99.9        |               | 5 - 40E10 E4E1410 GAI BS 1 1015E10 GAI BS     |
|      | ws                                   | 750                                                     | -2.302                                                              | 348.58                   | -1.284         | 273.26           |                    | -             |                                               |
|      |                                      | 500                                                     | -1.585                                                              | 318.88                   | -0.369         | 232.76           |                    |               | S = 408.8 - 239.6 F6-GAP-WS + 20.36 F6-GAP-W  |
|      |                                      | 250                                                     | -0.801                                                              | \                        | 0.705          | \                | R-Sq = 99.99       | 6             |                                               |
|      |                                      | 保持                                                      | <b>率评价</b>                                                          | 对向刚振                     |                | 同向例              | 度差评价               |               |                                               |
| 度    | 刚度评价                                 | LC原始例度                                                  | LC刚度保持率                                                             |                          | PT刚度 ( DS-WS ) | DS:(LC-PT)/LC    | WS:(LC-PT)/LC      |               |                                               |
| 价    | = 1 22                               |                                                         |                                                                     | /AVE(LC:DS+WS)           | /AVE(PT:DS+WS) |                  |                    |               |                                               |
| 块    | 压力段1000                              | 660.47                                                  |                                                                     | -13.60%                  | -6.10%         | 11.561%          | 17.96%             | 高級土5%         |                                               |
|      | 压力段750                               | 660.47                                                  | 106.6%                                                              | -18.06%                  | -4.82%         | 10.466%          | 21.61%             | 普通土10%        |                                               |
|      | 压力段500                               |                                                         |                                                                     | -25.02%                  | -2.62%         | 8.565%           | 27.01%             |               |                                               |
|      |                                      | 現錐设定                                                    | 对应压力                                                                | 压力偏差                     | 500吨时辊缝差       | 零调偏差             | 操调量                |               |                                               |
|      | DS-Gap                               | 0                                                       | 509.4                                                               | 185.05%                  | 1.619          | -2.315           | 0.352              | 偏差±2nn        |                                               |
|      | WS-Gap                               | 0                                                       | 19.78                                                               |                          |                |                  |                    | 操调量±0.3nn     |                                               |
|      | 模型预报                                 | 轧制力预报                                                   | 1115                                                                | 轧制力实际 ( -<br>0.5s+0.5s ) | 1133.000       | 预报精度             | 1.61%              | ±5%           |                                               |
| 调    |                                      | DS-LC                                                   | WS-LC                                                               | Total-LC                 | DS-PT          | WS-PT            | Total-PT           |               | 1                                             |
| 价    |                                      | 500.9                                                   | 500.9                                                               | 1001.8                   | 468.900        | 413.7            | 882.6              |               | 1                                             |
| 块    |                                      | DS (LC-PT)                                              | WS (LC-PT)                                                          | Total ( LC-PT )          | LC ( DS-WS )   | PT ( DS-WS )     | COLIO              | ±10%          |                                               |
|      | 零调过程中的力                              | 32                                                      | 87.2                                                                | 119.2                    | 0.000          | 55.2             |                    | ±10%          | 1                                             |
|      | 及偏差分析                                | Total (LC-PT)                                           |                                                                     | WS (LC-PT) /WS-          |                | PT ( DS-WS )     |                    | ±10x          | 1                                             |
|      |                                      | /Total-LC                                               | LC                                                                  | IC                       | /aveLC:DS+WS   | /aveP:DS+WS      |                    |               |                                               |
|      |                                      | 11.90%                                                  | 6.39%                                                               | 17.41%                   | 0.00%          | 12.51%           |                    |               | -                                             |
|      |                                      | DS-LC                                                   | WS-LC                                                               | Total-LC                 | DS-PT          | WS-PT            | Total-PT           |               | -                                             |
|      |                                      | DS-LC                                                   | WS-LC                                                               | 1142,700                 | 493.7          | WS-P1            | 965.4              |               | -                                             |
| 刜    |                                      | DC (LC DT.)                                             | MC (LC DT)                                                          |                          |                | DT ( DC M/C )    | 905.4              |               | -                                             |
| 程    | 轧制过程中的力                              | DS (LC-PT)                                              | WS (LC-PT)<br>102.3                                                 | Total ( LC-PT )<br>177.3 | LC ( DS-WS )   | PT ( DS-WS )     |                    |               | -                                             |
| 价    | 及偏差分析                                |                                                         |                                                                     |                          |                |                  |                    |               |                                               |
| 块    |                                      | Total (LC-PT)                                           |                                                                     | WS ( LC-PT ) /WS-        |                | PT ( DS-WS )     |                    |               |                                               |
|      |                                      | /Total-LC                                               | LC                                                                  | LC                       | /aveLC:DS+WS   | /aveP:DS+WS      |                    |               |                                               |
|      |                                      | 15.52%                                                  |                                                                     | 17.82%                   | -0.93%         | 4.56%            |                    | 1             | 4                                             |
|      | 2:零调偏差-5.2:<br>3:轧钢时,LC压<br>4:设备变化:新 | Lmm;操调量0.35。<br>差-4t,PT压差22.2<br>换拖车,测量F6底 <sup>3</sup> | 压段达到-25%;PTä<br>mm;DS加垫3mm;<br>ht,正常。<br>平面,两侧水平差0.02<br>上辊倾斜压下时造成的 | 2mm;平面度0.39m             | m;             | 上牌坊顶板。           | (                  |               |                                               |

图 12.36 某钢厂的刚度评价

## 12.21 MPT 轧制节奏跟踪

MPT(Mill Pacing Tracing)50ms 计算一次头尾准确跟踪位置。

减少摆钢等待。

轧制节奏提升3秒,每天可多生产20块钢。



图 12.37 轧制节奏跟踪

#### 12.22 IGBT 柔性直流斩波电源 - 绿色智能超级电弧炉

项目获得国家科技进步二等奖。PDA 系统可对各相电流、电压进行 20KHz 数据 采集,作 3、5、7…13、15、17…等次谐波的在线、离线分析。



图 12.38 绿色智能超级电弧炉

应用了新型 IGBT 柔性直流供电技术、电极无级双控智能调节技术、废钢连续预热技术、废钢阶梯连续加料技术、风冷触针底电极技术、二噁英治理和余热回收技术、智能炼钢技术等先进技术,可快速响应电弧炉内的冶炼供能需求和应对短路过流冲击工况,可缩短冶炼周期至 30min 以内,电耗可低至 250-300kwh/t,电极消耗 0.6-0.8kg/t,是新一代绿色、节能、环保、高效型电炉,在提高生产效率、降低电耗和电极消耗、提升金属收得率等方面相比常规电炉有极大的优势。

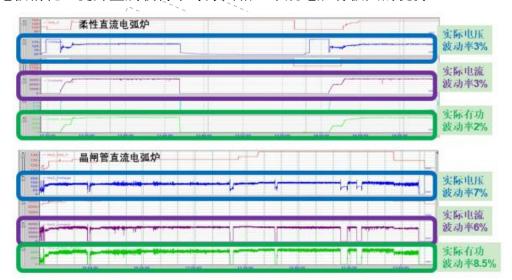



图 12.39 绿色智能超级电弧炉与传统电炉性能对比曲线

#### 12.23 移动端 APP

PDA.apk 是安卓安装包,需要存贮权限,各项目现场配置信息要下载到存贮卡中以备调用。



图 12.40 各种风格实时数据显示及生产监控系统

#### 12.24 PLC 环网故障检测

多台 S7-1500 控制器、HMI 组成的环网表面工作正常,PDA 接入该网进行 2ms 数据采集时发现每隔 6 秒丢几十数据包,PDA 直连 PLC 则一切正常,进一步发现断开环网一切也正常,后将 PLC 版本调低环网正常,PLC 版本并非越高越好。

#### 12.25 数学模型日志

现代轧钢数学模型越来越复杂,传统的方法是把关键数据写入.log 日志文件,发现问题就分析.log 文本文件,分析不直观、效率低,通过共享内存或网络可以把大量的模型数据记录到 PDA 系统,加快模型的调试进度和故障分析的便捷性和准确性。

### 12.26 公司级主辅传动系统数据采集综合方案

为了与自动化 L1 系统隔离,对于小于 10ms 采样周期的信号通过 CBE20 组建专用 PN 网进行采集,对采样周期无特殊要求的通过标准以太网用西门子内部通讯协议从 S120 读取数据。

PDA 系统将采集的信号保存为.dat 文件,还可以保存到关系型数据库和时序型数据库 InfluxDB 中,便于 Power BI、帆软、grafana 等各类自动报表和大数据分析。根据各分厂地理位置及传动系统台数需要设置多台 PDA 服务器。

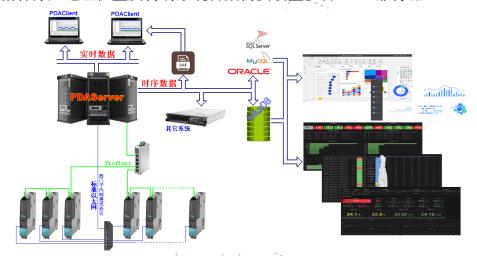



图 12.41 主辅传动系统数据采集综合方案

## 12.27 S7-1500 及从站数据采集方案

S7-1500 系列 PLC 可以通过标准以太网 UDP 和 Profinet (PDAServer 作为多个 PN 从站)实现 ms 级的数据采集, PN 交换机可直接转发所有从站数据到 PDAServer, 系统方案如下图所示。

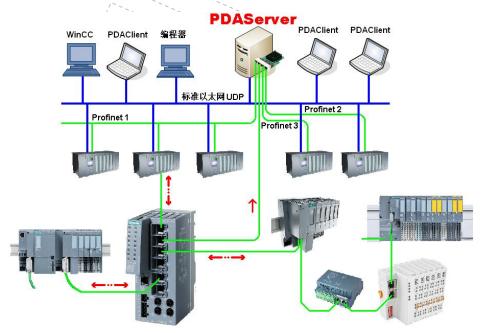



图 12.42 S7-1500 数据采集方案

# 13 设备选型

表 13.1 标准配置成套订货表

| 序号   | 型 号      | 规                   | 格                  | MC60xx   | 计算机    | 订货号              |
|------|----------|---------------------|--------------------|----------|--------|------------------|
| 1    | PDA-1    | 采样点数:<br>采样时间:      | 10240<br>10~20ms   | √        | ×      | PDA SYS-N01-0AB0 |
| 1    | I DA-I   | PLC 连接数:            | 1                  | •        | √      | PDA SYS-N01-0AB1 |
| 2    | PDA-2    | 采样点数:<br>采样时间:      | 5120<br>0.05~20ms  | J        | ×      | PDA SYS-N02-0AB0 |
| 2    | TDA-2    | PLC 连接数:            | 0.03~20ms<br>1     | •        | √      | PDA SYS-N02-0AB1 |
| 3    | PDA-3    | 采样点数:<br>采样时间:      | 5120<br>0.05~20ms  |          | /× /   | PDA SYS-N03-0AB0 |
| 3    | TDA-3    | PLC 连接数:            | 100                | <b>V</b> | \'\'\' | PDA SYS-N03-0AB1 |
| 4    | PDA-4    | 采样点数:<br>采样时间:      | 1024<br>0.05~20ms  | J        | ×      | PDA SYS-N04-0AB0 |
| 7    | TDN-4    | PLC 连接数:            | 100                | v        | √      | PDA SYS-N04-0AB1 |
| 5    | PDA-5    | 采样点数:<br>采样时间:      | 10240<br>0.05~20ms | 1        | ×      | PDA SYS-N05-0AB0 |
| 3    | TDN-3    | PLC 连接数:            | 100                | /        | √      | PDA SYS-N05-0AB1 |
| 6    | PDA-6    | 采样点数:<br>采样时间:      | 20480<br>0.05~20ms | 2/       | ×      | PDA SYS-N06-0AB0 |
|      | 12710    | PLC 连接数:            | 100                | •        | √      | PDA SYS-N06-0AB1 |
| 7    | PDA-7    | 采样点数:<br>采样时间:      | 30720<br>0.05~20ms | '        | ×      | PDA SYS-N07-0AB0 |
| ,    | TDN-7    | PLC 连接数:            | 100                | v        | √      | PDA SYS-N07-0AB1 |
| 8    | PDA-8    | 采样点数:<br>采样时间:      | 定制,64<br>定制,0.25ms | √        | ×      | PDA SYS-N08-0AB0 |
| 0    | 1 D/1-0  | PLC 连接数:            | 定制, 3              | v        | √      | PDA SYS-N08-0AB1 |
| 9    | PDA-9    | / <del>采</del> 样点数: | 10240<br>10~20ms   | √        | ×      | PDA SYS-N09-0AB0 |
|      |          | PLC 连接数:            | * '                | ,        | √      | PDA SYS-N09-0AB1 |
| 10   | PDA-10   | 采样点数:<br>采样时间:      | 20480<br>10~20ms   | √        | ×      | PDA SYS-N10-0AB0 |
| 10   | 15/110   | PLC 连接数:            | 100                | ,        | √      | PDA SYS-N10-0AB1 |
| 11   | PDA-11   | 采样点数:<br>采样时间:      | 30720<br>10~20ms   | √        | ×      | PDA SYS-N11-0AB0 |
| - 11 |          | PLC 连接数:            | 100<br>100         | ,        | √      | PDA SYS-N11-0AB1 |
| 12   | PDA-12   | 采样点数:<br>采样时间:      | 51200<br>10~20ms   | √        | ×      | PDA SYS-N12-0AB0 |
| 12   | 1 D/1-12 | PLC 连接数:            | 100<br>100         | *        | √      | PDA SYS-N12-0AB1 |
| 13   | PDA-20   | 无限点 / 10~20ms       |                    | √        | ×      | PDA SYS-N20-0AB0 |
| 14   | PDA-21   | 无限点 / 0.05~20m      | s                  | √        | ×      | PDA SYS-N21-0AB0 |

| 序号       型号       规格       MC60xx       计算机       订货号         15       PDA-EVIS       工程车辆信息数据采集系统       ✓       ×       PDA EVIS-N01         16       PDA-LTA       长期历史趋势分析系统       ✓       ×       PDA LTA-N01-         17       PDA-HDS       HDS 开放式高频时序数据库 HDServer       ✓       ×       PDA HDS-N01-         18       WinCC-PDA       WinCC 升级 PDA 软件包       ✓       ×       PDA WinCC-N0         19       FTView-PDA       FTViev 升级 PDA 软件包       ✓       ×       PDA FTView-N         20       ie-PDA       浏览器 PDA 功能包       ✓       ×       PDA IE-N01-0A         21       C#-PDA       C#高频数据分析 PDA 软件包       ✓       ×       PDA C#-N01-0A         22       PDA-DBU       数据库系统及升迁工具       ✓       ×       PDA DBU-N01- | -0AB0<br>0AB0<br>0AB0<br>01-0AB0<br>01-0AB0 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| 16       PDA-LTA       长期历史趋势分析系统       ✓       ×       PDA LTA-N01-         17       PDA-HDS       HDS 开放式高频时序数据库 HDServer       ✓       ×       PDA HDS-N01-         18       WinCC-PDA       WinCC 升级 PDA 软件包       ✓       ×       PDA WinCC-N0         19       FTView-PDA       FTViev 升级 PDA 软件包       ✓       ×       PDA FTView-N         20       ie-PDA       浏览器 PDA 功能包       ✓       ×       PDA IE-N01-0A         21       C#高频数据分析 PDA 软件包       ✓       PDA C#-N01-0A                                                                                                                                                                                                                                                 | 0AB0<br>0AB0<br>01-0AB0<br>01-0AB0          |
| 17 PDA-HDS HDS 开放式高频时序数据库 HDServer ✓ × PDA HDS-N01- 18 WinCC-PDA WinCC 升级 PDA 软件包 ✓ × PDA WinCC-N0 19 FTView-PDA FTViev 升级 PDA 软件包 ✓ × PDA FTView-N 20 ie-PDA 浏览器 PDA 功能包 ✓ × PDA IE-N01-0A 21 C#-PDA C#高频数据分析 PDA 软件包 / × PDA C#-N01-0A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0AB0<br>01-0AB0<br>01-0AB0                  |
| 18 WinCC-PDA WinCC 升级 PDA 软件包                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 01-0AB0<br>01-0AB0                          |
| 19 FTView-PDA FTViev 升级 PDA 软件包                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 01-0AB0                                     |
| 20 ie-PDA 浏览器 PDA 功能包 ✓ × PDA IE-N01-0A 21 C#-PDA C#高频数据分析 PDA 软件包 / × PDA C#-N01-0A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                             |
| 21 C#-PDA C#高频数据分析 PDA 软件包 / /× PDA C#-N01-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | vB0                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                             |
| 22 PDA-DBU 数据库系统及升迁工具 ✓ × PDA DBU-N01-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AB0                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0AB0                                       |
| 23 PDA-DCC 数字钢卷转换存贮系统 PDA DCC-N01-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0AB0                                        |
| 24 PDA-CFS 钢卷快速搜索统计系统 ✓ × PDA CFS-N01-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | )AB0                                        |
| 25 PDA-FSS 钢卷快速搜索统计服务器 ✓ PDA FSS-N01-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | )AB0                                        |
| 26 PDA-DSO 设备诊断同步过采样系统 ✓ × PDA DSO-N01-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0AB0                                        |
| 27 PDA-DIA 工艺及设备诊断数字钢卷系统 / × PDA DIA-N01-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | )AB0                                        |
| 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                             |
| 29 PDA-EVT 事件同步数据解析转换工具 ✓ × PDA EVT-N01-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0AB0                                        |
| 30 PDA-RSA 轧辊剥落预警及快停系统 ✓ × PDA RSA-N01-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0AB0                                        |
| 31 PDA-RCM 辊道电流监测系统 ✓ × PDA RCM-N01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0AB0                                       |
| 32 PDA-DPI 设备诊断及工艺数据整合系统 ✓ × PDA DPI-N01-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OAB0                                        |
| 33 PDA-HDP 高频高密高速数据平台构建 ✓ × PDA HDP-N01-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0AB0                                        |
| 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                             |
| 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                             |
| 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                             |
| 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                             |
| 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                             |

- \* 含: 硬件加密狗(定制设计制造); 数据采集软件; 数据分析软件; 采集卡 MC60xx(可选件)
- \* 订货时请注明 PLC 类型。
- \* 特殊采样周期订货时请注明
- \* 部分厂商 PLC 端可不编写程序, PDA 直接按变量地址读取数据
- \* 特殊设备合作开发 PDA 驱动
- \* 附送包括第三方在内的 PDA 数据接口

#### 表 13.2 接口模块部件订货表

| 序号 | 型 号                | 订货号                  | 备 注                       |
|----|--------------------|----------------------|---------------------------|
|    | •                  |                      |                           |
| 1  | PDAServer          | PDA SRV-VER80-0AB0   | 数据采集软件                    |
| 2  | PDAClient          | PDA CLT-VER80-0AB0   | 在线及离线数据分析软件               |
| 3  | QDRServer          | PDA QDR-VER80-0AB0   | 钢管类质量数据记录                 |
| 4  | QDRServer          | PDA QDR-VER81-0AB0   | 热轧类质量数据记录                 |
| 5  | QDRServer          | PDA QDR-VER82-0AB0   | 分布式质量数据记录                 |
| 6  | QDRServer          | PDA QDR-VER83-0AB0   | 冷轧类质量数据记录                 |
| 7  | HDServer           | PDA HDS-VER80-0AB0   | PDA 数据文件合并                |
| 8  | SplitServer        | PDA SPLIT-VER80-0AB0 | 数字钢卷分卷                    |
| 9  | TrimServer         | PDA TRIM-VER80-0AB0  | 数字钢卷切头切尾                  |
| 10 | StiffnessServer    | PDA STIF-VER80-0AB0  | 4.机刚度测量数据记录               |
| 11 | RollChangeServer   | PDA RCH-VER80-0AB0   | <b>轧机换辊数据记录</b>           |
| 12 | ModbusTcpServer    | PDA MBS-VER80-0AB0   | Modbus 服务器                |
| 13 | mqttServer         | PDA MQTT-VER80-0AB0  | mqtt 服务器                  |
| 14 | WebSocketServer    | PDA WS-VER80-0AB0    | WebSocket 服务器             |
| 15 | Distribute         | PDA DTB-VER80-0AB0   | 分布式数据采集                   |
| 16 | Energy             | PDA ENG-VER80-0AB0   | 能量报表系统                    |
| 17 | RunningRecord      | PDA RRD-VER80-0AB0   | 运行记录系统                    |
| 18 | pdaAlarm           | PDA ALM-VER80-0AB0   | 报警及操作记录                   |
| 19 | WinRC              | PDA WRC-VER80-0AB0   | Windows 实时控制中心            |
| 20 | pdaTools           | PDA PTS-VER80-0AB0   | pda 工具集                   |
| 21 | IPCheck            | PDA IPC-VER80-0AB0   | IP 地址检测及报警工具              |
| 22 | pdaCloud           | PDA CLD-VER80-0AB0   | 整理数据并自动上传到云端              |
| 23 | dbUpgrade          | PDA DBU-VER80-0AB0   | 关系型数据库离线升迁工具              |
| 24 | dbUpgradeRt /      | PDA DBU-VER80-0AB0   | 关系型数据库实时升迁工具              |
| 25 | dbUpgradeTS        | PDA DUR-VER80-0AB0   | 时序数据库升迁工具                 |
| 26 | ProcessServer      | PDA PDS-VER80-0AB0   | 工艺数据转换服务器                 |
| 27 | spotCheck          | PDA SCHK-VER80-0AB0  | 点检子系统                     |
| 28 | PDA AUTHORITY \    | PDA USB-AUTH-0AB0    | USB 接口 PDA 系统用户授权         |
| 29 | CFS                | CFS SRV-VER80-0AB0   | 数字钢卷快速搜索服务器               |
| 30 | iPDA /             | PDA IPDA-VER80-0AB0  | 移动端实时数据 PDA               |
| 31 | iPDA               | PDA IPDA-VER80-0AB1  | 移动端实时数据 PDA(支持多套 PDA)     |
| 32 | MC6068             | PDA PCI-MC6068-0AB0  | PCI 高速数据采集卡               |
| 33 | MC6069             | PDA PCIE-MC6069-0AB0 | PCIe 高速数据采集卡              |
| 34 | MC6070             | PDA USB-MC6070-0AB0  | USB 高速数据采集卡               |
| 35 | PDA System         | PDA USB-SYS-0AB0     | PDA 系统盘                   |
| 36 | PDA DOT            | PDA DOT-10240-0AB0   | PDA 系统点数,10240 点,余类推      |
| 37 | PDA PROTOCOL STACK | PDA PROT-STACK-0AB0  | PDA 协议栈                   |
| 38 | PDA LIB            | PDA LIB-PLC-0AB0     | PDA 函数库及用户程序              |
| 39 | PDA ISO-AI         | PDAU ISO-16AI-0AB0   | 16 通道 AI 模块(全隔离型)         |
| 40 | PDA ISO-DI         | PDAU ISO-16DI-0AB0   | 16 通道 DI 模块(全隔离型)         |
| 41 | PDA ISO-AIDI       | PDAU ISO-16AIDI-0AB0 | 16 通道 AI+16 通道 DI 模块(隔离型) |
| 42 | PDA ISO-DI         | PDAU ISO-32DI-0AB0   | 32 通道 DI 模块(隔离型)          |

| 43 | PDA SSI          | PDAU SSI-8CH-0AB0     | 8 通道 SSI 输入模块                                                                                                                                                                            |
|----|------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 44 | PDA COM          | PDAU COM-2AI-0AB0     | 2 通道串口 PDA 模拟量输入模块                                                                                                                                                                       |
| 45 | PDA DPM          | PDA DPM-2B244-0AB0    | PDA Profibus-DP 接口模块                                                                                                                                                                     |
| 46 | PDA MANUAL       | PDA REF-MANU-0AB0     | PDA 参考手册 中文纸质版                                                                                                                                                                           |
| 47 | PDA MANUAL       | PDA REF-MANU-0AB1     | PDA 参考手册 英文纸质版                                                                                                                                                                           |
| 48 | PDA SERVER       | PDA SRV-HP-0AB0       | PDA 服务器,HP 计算机                                                                                                                                                                           |
| 49 | PDA SERVER       | PDA SRV-DELL-0AB0     | PDA 服务器,DELL 计算机                                                                                                                                                                         |
| 50 | PDA DPM          | PDA DPM-4B244-0AB2    | PDA 网关 Profibus-DP                                                                                                                                                                       |
| 51 | PDA AS-Interface | PDA AS-INTERFACE-0AB2 | PDA 网关 AS-Interface                                                                                                                                                                      |
| 52 | PDA ISO-AIDI     | PDAU ISO-8AIDI-0AB0   | 8 通道 AI+8·通道 DI 模块(全隔离型)  AI Type O: Voltage 1: Current  DI Type A: DC24V B: DC5V  OABO  0: 0~±5V 0~±10mA 2: 1~5V 4~20mA 3: 0~10V 0~120mA 4: 0~±10V 0~1A 5: 0~5A 6: 0~±1A 7: 0~±5A 8: 9: |
| 53 | PDA cc-link      | PDA CC-LINK-0AB2      | PDA 网关 cc-link                                                                                                                                                                           |
| 54 | PDA DALI DMX     | PDA DALI-DMX-0AB2     | PDA 网关 DALI DMX                                                                                                                                                                          |
| 55 | PDA enocean      | PDA ENOCEAN-0AB2      | PDA 网关 enocean                                                                                                                                                                           |
| 56 | PDA InterBus     | PDA INTERBUS-0AB2     | PDA 网关 InterBus                                                                                                                                                                          |
| 57 | PDA io-link      | PDA IO-LINK-0AB2      | PDA 网关 io-link                                                                                                                                                                           |
| 58 | PDA KNX/EIB      | PDA KNX-EIB-0AB2      | PDA 网关 KNX/EIB                                                                                                                                                                           |
| 59 | PDA lightbus     | PDA LIGHTBUS-0AB2     | PDA 网关 lightbus                                                                                                                                                                          |
| 60 | PDA Lonworks     | PDA LONWORKS-0AB2     | PDA 网关 Lonworks                                                                                                                                                                          |
| 61 | PDA M-BUS        | PDA M-BUS-0AB2        | PDA 网关 M-BUS                                                                                                                                                                             |
| 62 | PDA MP-BUS       | PDA MP-BUS-0AB2       | PDA 网关 MP BUS                                                                                                                                                                            |
| 63 | PDA PN-MSTR      | PDA PN-MSTR-0AB0      | PDA Profinet 主站交换机                                                                                                                                                                       |
| 64 | PDA COM-RUSB     | PDA COM-RUSB-0AB0     | PDA 串口 USB 复位器                                                                                                                                                                           |
|    |                  |                       |                                                                                                                                                                                          |

表 13.3 PDA 函数库及用户程序订货表

| 序号 | 型号      | 订货号               | 备 注                        |
|----|---------|-------------------|----------------------------|
| 1  | PDA LIB | PDA LIB-PLC-0AB0  | S7-400 high speed          |
| 2  | PDA LIB | PDA LIB-PLC-0AB6  | S7-300 high speed          |
| 3  | PDA LIB | PDA LIB-PLC-0AB22 | Ethernet/IP                |
| 4  | PDA LIB | PDA LIB-PLC-0DP0  | Profibus-DP in S7-400/300  |
| 5  | PDA LIB | PDA LIB-PLC-0BF25 | Beckhoff                   |
| 6  | PDA LIB | PDA LIB-PLC-0WG25 | Wago                       |
| 7  | PDA LIB | PDA LIB-PLC-0MG25 | Moog                       |
| 8  | PDA LIB | PDA LIB-PLC-0AB8  | Profinet                   |
| 9  | PDA LIB | PDA LIB-PLC-0BF36 | Beckhoff realtime Ethernet |
| 10 |         |                   |                            |

## 表 13.4 PDA 协议栈订货表

| 序号 | 型号             | 订货号                  | 备注                                         |
|----|----------------|----------------------|--------------------------------------------|
| 1  | PDA PROTOCOL   | PDA PROT-STACK-0AB0  | S7-400 high speed                          |
| 2  | PDA PROTOCOL   | PDA PROT-STACK-0AB6  | S7-300 high speed                          |
| 3  | PDA PROTOCOL   | PDA PROT-STACK-0AB21 | S7-400/300/TDC/FM458 variable access by IP |
| 4  | PDA PROTOCOL   | PDA PROT-STACK-0AB27 | S7-1200/1500 variable access by IP         |
| 5  | PDA PROTOCOL   | PDA PROT-STACK-0AB1  | S7-400 variable access by MAC              |
| 6  | PDA PROTOCOL   | PDA PROT-STACK-0AB54 | S7-400/300 ISO transport connection        |
| 7  | PDA PROTOCOL   | PDA PROT-STACK-0AB3  | MPI/DP variable access                     |
| 8  | PDA PROTOCOL   | PDA PROT-STACK-0AB23 | Módbus/- varjáble access                   |
| 9  | PDA PROTOCOL   | PDA PROT-STACK-0AB33 | RS232                                      |
| 10 | PDA PROTOCOL   | PDA PROT-STACK-0AB25 | Standard Udp                               |
| 11 | PDA PROTOCOL   | PDA PROT-STACK-0AB32 | Kernal Udp                                 |
| 12 | PDA PROTOCOL   | PDA PROT-STACK-0AB20 | Standard Tcp server                        |
| 13 | PDA PROTOCOL   | PDA PROT-STACK-QAB7  | GDM(Global Data Memory)                    |
| 14 | PDA PROTOCOL   | PDA PROT-STACK-0AB11 | Reflective memory                          |
| 15 | PDA PROTOCOL   | PDA PROT-STACK-0AB28 | ModbusTCP - memory block                   |
| 16 | PDA PROTOCOL   | PDA PROT-STACK-0AB31 | ModbusTCP - variable access                |
| 17 | PDA PROTOCOL   | PDA PROT-STACK-0AB22 | Ethernet/IP                                |
| 18 | PDA PROTOCOL   | PDA PROT-STACK-0AB29 | Ethernet/IP-backplate                      |
| 19 | PDA PROTOCOL   | PDA PROT-STACK-0AB59 | Ethernet/IP backplate block                |
| 20 | PDA PROTOCOL / | PDA PROT-STACK-0AB26 | EGD(Ethernet Global Data)                  |
| 21 | PDA PROTOCOL   | PDA PROT-STACK-0AB18 | SRTP(Service Request Transfer Protocol)    |
| 22 | PDA PROTOCOL \ | PDA PROT-STACK-0AB30 | SNPX                                       |
| 23 | PDA PROTOCOL   | PDA PROT-STACK-0AB8  | Profinet                                   |
| 24 | PDA PROTOCOL   | PDA PROT-STACK-0AB2  | Profinet for simotion and other driver     |
| 25 | PDA PROTOCOL   | PDA PROT-STACK-0AB9  | Profinet for TDC                           |
| 26 | PDA PROTOCOL   | PDA PROT-STACK-0AB5  | EtherCAT                                   |
| 27 | PDA PROTOCOL   | PDA PROT-STACK-0AB36 | Beckhoff Realtime Ethernet                 |
| 28 | PDA PROTOCOL   | PDA PROT-STACK-0AB15 | Beckhoff ADS                               |
| 29 | PDA PROTOCOL   | PDA PROT-STACK-0AB38 | Iba data                                   |
| 30 | PDA PROTOCOL   | PDA PROT-STACK-0AB37 | Logical signals                            |
| 31 | PDA PROTOCOL   | PDA PROT-STACK-0AB39 | the third party data                       |
| 32 | PDA PROTOCOL   | PDA PROT-STACK-0AB24 | standard Tcp client                        |
| 33 | PDA PROTOCOL   | PDA PROT-STACK-0AB12 | OPC Automation                             |

| _  |              |                        |                                             |
|----|--------------|------------------------|---------------------------------------------|
| 34 | PDA PROTOCOL | PDA PROT-STACK-0AB13   | OPC Com                                     |
| 35 | PDA PROTOCOL | PDA PROT-STACK-0AB35   | Realtime data file                          |
| 36 | PDA PROTOCOL | PDA PROT-STACK-0AB4    | MITSUBISHI MC format 4(RS232)               |
| 37 | PDA PROTOCOL | PDA PROT-STACK-0AB17   | MELSECT-QnA 3E(Ethernet)                    |
| 38 | PDA PROTOCOL | PDA PROT-STACK-0AB10   | DL/T645-2007(RS232)                         |
| 39 | PDA PROTOCOL | PDA PROT-STACK-0AB34   | Send data to PLC by UDP                     |
| 40 | PDA PROTOCOL | PDA PROT-STACK-0AB19   | S7-200smart variable access by IP           |
| 41 | PDA PROTOCOL | PDA PROT-STACK-0AB40   | CU320 Profinet                              |
| 42 | PDA PROTOCOL | PDA PROT-STACK-0AB41   | Vehicle CAN                                 |
| 43 | PDA PROTOCOL | PDA PROT-STACK-0AB50   | Tcp packet for 0.0625ms(16kHz) e.g. S7-1517 |
| 44 | PDA PROTOCOL | PDA PROT-STACK-0AB51   | Tcp packet for 0.0625ms(16kHz) e.g. S7-1517 |
| 45 | PDA PROTOCOL | PDA PROT-STACK-0AB55   | Udp packet for 0.05ms(20kHz)                |
| 46 | PDA PROTOCOL | PDA PROT-STACK-0AB56   | Realtime Ethernet packet for 0.05ms(20kHz)  |
| 47 | PDA PROTOCOL | PDA PROT-STACK-0AB52   | WebSocket/                                  |
| 48 | PDA PROTOCOL | PDA PROT-STACK-0AB53   | RS232 packet                                |
| 49 | PDA PROTOCOL | PDA PROT-STACK-0AB57   | mqtt/                                       |
| 50 | PDA PROTOCOL | PDA PROT-STACK-0AB58   | Орс Ua                                      |
| 51 | PDA PROTOCOL | PDA PROT-STACK-0AB60   | PCI/PCIe memory                             |
| 52 | PDA PROTOCOL | PDA PROT-STACK-0AB61   | TCnet                                       |
| 53 | PDA PROTOCOL | PDA PROT-STACK-0AB62   | Ethernet/IP backplate(3rd)                  |
| 54 | PDA PROTOCOL | /PDA PROT-STACK-0AB63/ | Ethernet/IP backplate block(3rd)            |
| 55 |              |                        |                                             |
| 56 | 2            |                        |                                             |
| 57 |              |                        |                                             |
| 58 |              | \                      |                                             |
| 59 |              | \/                     |                                             |
| 60 |              |                        |                                             |
| 61 |              |                        |                                             |
| 62 |              |                        |                                             |
| 63 |              |                        |                                             |
| 64 |              |                        |                                             |
| 65 |              |                        |                                             |
| 66 |              |                        |                                             |
|    |              |                        |                                             |

经纬铭月科技(武汉)有限公司 自动化与传动事业部 pda2002@sina.com 15927056236

如有变动,恕不另行通知 订货号: PDA REF-MANU-OABO 本样本中提供的信息只是对产品的一般说明和特性介绍。文中内容可能与实际应用的情况有所出入,并且可能会随着产品的进一步开发而发生变化。仅当相关合同条款中有明确规定时,经纬科技方有责任提供文中所述的产品特性。

经纬科技版权所有