Product catalogs **Process Data Acquisition - PDA**

Detailed analysis of quality management & industrial big data sources

PDA Process Data Acquisition

- LTA Long Trend Analysis
- **HDS** open time serial History Data Server
- **OCX** WinCC-PDA FTView-PDA Web-PDA
- **DBU** Database Upgrade
- DCC Digital Coil Convert system
- CFS Coil Fast Search system
- **DSO** Device diagnostic Synchronous Oversampling system
- **RSA** Roll Spalling Alarm and quick stop system
- **RCM** Roller Current Monitoring system
- **HDP** High Density data Platform construction

KINGWEI PDA-10000

Answers for industry.

	Background and significance	1
	PDA data acquisition and analysis system	2
	Overview of PDA system	2.1
	Fields of application	2.2
KINGWEI	System functionality and performance	2.3
	Technology parameters	2.4
	System structure and network topology	2.5
	Supported PLCs, field buses and manufactures	2.6
	PLC protocol service of data platform	2.7
	Data acquisition and analysis view	2.8
	WinCC-PDA FTView-PDA ie-PDA	2.9
PDA	Using PDAClient analysis tool under Linux	2.10
	pdaCloud	2.11
product catalogs	Millisecond level data acquisition for entire factory	2.12
	High speed data forwarding	2.13
	LTA - Long historical Trend Analysis system	3
	HDS - open time series high frequency Historical database	4
	DBU - Database system and Upgrade tools	5
	PDA to SQLServer real-time data	5.1
	PDA to SQLServer historical data	5.2
	PDA to influxDB real-time data	5.3
	Automatic report	5.4
	DCC - Digital steel Coil Conversion and storage system	6
	Application of digital steel coil	6.1
	Digital steel coil conversion calculation	6.2
	Length timing equipment and equipment diagnosis digital steel coil	6.3
	Alignment	6.4
/	Real time digital steel coil	6.5
·	Basic, Standard, Professional, and Enterprise Editions	6.6
/****	High resolution real-time quality judgment and device status discrimination Digital steel coil analysis tool BigOffice	6.7
	Application of digital steel coil in quality inspection	6.9
	Digital steel plate	6.10
	Digital steel pipe	6.11
· · · · · · · · · · · · · · · · · · ·	Cold strip mill digital steel coil	6.12
	CFS - Coil Fast Search and statistics system	7
	Changes in working methods	7.1
	Changes in work platforms	7.2
	Changes in data frequency granularity	7.3
	System structure	7.4
	Implementation scheme	7.5
PDA REF-MANU-0AB0	DSO - Device diagnostic Synchronous Oversampling system	8
	RSA - Roll Spalling Alarm and fast stop system	9
01 / 2025	RCM - Roller Current Monitoring system	10
	HDP - High frequency density and speed Data Platform construction	11
	Project performance and typical project application	12
	Equipment model	13

1 Background and significance

The PDA (Process Data Acquisition) high-speed data acquisition and analysis system is an industrial real-time high-speed data acquisition and analysis platform that integrates data acquisition, compression, storage, and analysis. It has online and offline analysis functions, and almost all of the underlying technologies of control systems and communication protocols are involved. This is a major technological weakness in China. High performance controllers in the industrial control field are basically monopolized by foreign countries, and the field bus standard The communication protocol is almost controlled by foreign companies, and high-speed collection of industrial data faces many technical barriers and high intensity encryption from abroad. It is an extravagant hope to independently obtain high-frequency and high-density data from our own machines and factories, and this situation urgently needs to be changed.

KingWei Impress Moon Technology Co.,Ltd. uphold the principle of "cooperation, integrity, pragmatic, innovation" philosophy, Service to customers with valiant pursuit of high quality, high reliability of the product quality. It is a domestic successful example of research development innovation.

After twenty years of development and innovation, mixed brand contacts reputation quality government and user support as a whole, the scale is moderate with production development and sales at home and abroad. become a supplier of industrial high-speed data acquisition and analysis system with support of relatively complete data source types, A whole set of technology standard has been constructed.

In many years, our R & D team focus on communication protocol research and development, field bus analysis, high speed data acquisition, real-time data compression, mass data storage, online data analysis techniques, unlimited energy and enthusiasm have been poured into them, a series of PDA hardware and software products have successfully developed with sincere cooperation of related Companies after diligently exploring, The comprehensive performance indicator reaches the international leading level.

Products design meets international standards, compatible with the domestic and foreign main electrical brand, to meet the industrial demand, has been widely used in metallurgical industry and the user's consistent praise is high.

Don't stop pursuing the development trend of electronic control technology, strive to perfect technical and economic integration is the permanent mission of the KingWei.

"To meet customer needs, create value for customers" is our eternal hope and action guide.

2 PDA data acquisition and analysis system

PDA (Process Data Acquisition) system is an industrial real-time platform with high speed data acquisition compression storage and analysis, online and offline analysis is its basis function, it's also a high performance general product at same time, it is a basic platform of industry 4.0 and big data.

(1) Provide equipment test method for the equipment manufacturing factory

(2) Provide effective methods of fault diagnosis and status detection for operation and maintenance of production plant

(3) Provide a convenient tool for the analysis of dynamic process

(4) provides the accurate basis for objection to the quality of product identification

(5) Provide strong data support for the development of new products

(6) Intelligent unmanned data recorder, radar, image recognition, speech recognition, deep learning, laser ranging, path planning, driving instruction, navigation and location, and equipment status

2.1 Overview of PDA system

The system can collect multiple units of PLC or controller data, the sampling period can be down to 0.05ms, the sampling points up to 100000 points, used to support the mainstream PLC, network, bus, hardware interface module, Multi-server and multi-client mode are supported, PDA drive may be developed cooperatively for special equipment, User specific analysis functions can be customized.

Figure 2.1 application interface

2.2 Fields of application

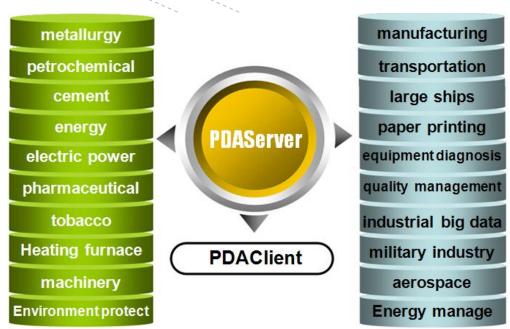


Figure 2.2 Application fields

2.3 System functionality and performance

Open, compatible, universal Millisecond data sampling Acquire 100000 points Effective real time data compression Microsecond time resolution Support for commonly used mainstream PLCs Support the reflective memory network Support the field bus and the hardware IO Wireless data acquisition Take client / server architecture Support multiple master multiple slave multi window Dedicated board, dedicated network Develop cooperatively PDA driver for special equipment Signal search, layering, grouping Export signal tree Config with Excel Telegraph message(mixed type taxis) Packeted data acquisition Analysis data export History data export Logical virtual signal Real-time trend Historical trend Dynamic playback Multi-column view Dual x-axis marks Dual y-axis marks Dynamic y-axis mark Auto scale Alignment Time sequence analysis 2D view 3D view Curve fit 3D surface view Surface fit Profile analysis Frequency chart Phase analysis Energy analysis Acceleration analysis Same compare analysis View navigator Roller span Roller zoom Span trend chart Zoom Adjust area height Data statistic Export statistic data Data dictionary Digital filter

Video synchronous analysis Absolute and calculative time base Analysis strategy X-Y convert Digital meter Curve annotation Fault diagnosis To capture transient signals Event note Expert system System alarm Database upgrade Data remote transmission Quality data report QDR–Quality data recording Judge the quality of questions Calculation of bearing oil film Mill stiffness measurement Mill stiffness trace report Performance test report of large hydraulic cylinder Dynamic running record and meter reading system Dynamic energy report To configure flexibly collection signal Acquiring state indication Wireless model configure Oscilloscope waveform analysis History data interface Compatible with third-party data formats Plugins Video synchronization analysis interface Online data interface Data file generation completion interface Fully open real-time data interface Oracle Database real-time interface Quality management system and big data interface HMI Interface High speed data forwarding ModbusTcpServer interface OpcUaServer / OpcUaClient KafkaServer / KafkaClient mqttServer / WebSocketServer Ftp Server / Http Server Whole process quality management and data analysis Customizing special analysis function Develop cooperatively for special board PLC Communication protocol service of data platform Distributed data acquisition Secondary day data file Minute grade year data file **Big Data Office** Cloud synchronizing Chinese / English / Any language

2.4 Technology parameters

PLC field bus and intelligent devices are supported.

2.4.1 Data type

String: LSTRING[Length]: 2 + Length bytes are occupied, the first byte is max string length, the second byte is actual string length

STRING[Length]: 1 + Length bytes are occupied, the first byte is actual string length CHAR[Length]: Length bytes are occupied

Analog: SINT: signed char, int8, smallint

INT: short, int16, shortint

DINT: long, int32, longint, integer

BYTE: USINT, unsigned char, uint8

WORD: UINT, uint16, unsigned int, DATE, S5TIME

DWORD: UDINT, unsigned long, uint32, longword, cardinal,

ulong, TIME, TIME_OF_DAY

REAL: FLOAT, single DOUBLE: LREAL, DateTime

Digital: BIT(BOOL, Boolean)

Mixed arrangement

2.4.2 Sampling period

0.05ms level(0.05ms, 0.2ms, 0.8ms.......50.0ms) 1ms level (1.0ms, 2.5ms, 3.6ms.......50.0ms) 10ms level (10ms, 11ms, 12ms......50ms)

2.4.3 Data compression

Realtime compression: focus on real-time and efficiency. Efficient compression: high compression ratio, pay attention to compression ratio. No compression: pay attention to openness.

2.4.4 Collection points

More than 100000, As the acquisition cycle becomes shorter, it may be less and depends on the computer performance.

2.4.5 PLC data source connection number

Less than or equal to 80

2.4.6 Data acquisition mode

Industrial Ethernet, Profibus-DP, RFM and other network acquisition.

Hardware interface module.

PLC forwardly sends data, PDA server receives them.

PDA server directly reads data from PLC.

Data packet transmitted.

2.4.7 System clock

Calculated clock

Real time clock (wide area synchronization)

2.4.8 Data interface

Dos, Windows32/64, Linux32/64, Android, Mac OS, iOS and other platforms are supported.

Fully open real time data interface

Oracle or other database realtime interface

Fully open historical data interface

Fully compatible with third party data

Quality management system and big data interface(Memory pointer + data file)

HMI interface(Memory pointer + data file)

Video synchronous data interface

Plugins

Data file generation completion interface

ModbusTcp interface

2.4.9 System device

To take general equipment and protocols as possible. To discard special interface module and network.

2.4.10 Distributed data acquisition

Local ethernet clock synchronization error is less than 1ms. GPS and other clock synchronization is supported.

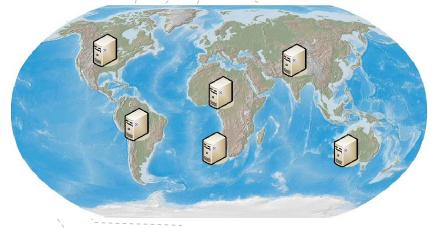


Figure 2.4 PDA Data Collection Server Distribution

2.5 System structure and network topology

Real time data of controller is collected at high speed by bus or network or interface module, the following analysis functions are provided: Selection of drawing mode(X axis based time, X axis based on length, ordinary view, 2D view, 3D view); Statistics function(calculation of the selected area maximum, minimum, instantaneous, mean, standard deviation, variance); Color control; View navigation; Signals arithmetic operations(addition, subtraction, multiplication, division, square, square root, the four operations of common mathematical functions); Various filters (Low pass, high pass, band pass, band stop); fast Fourier transform and so on.

The system is mainly composed of data acquisition server, data acquisition and analysis software, network configuration as shown below.

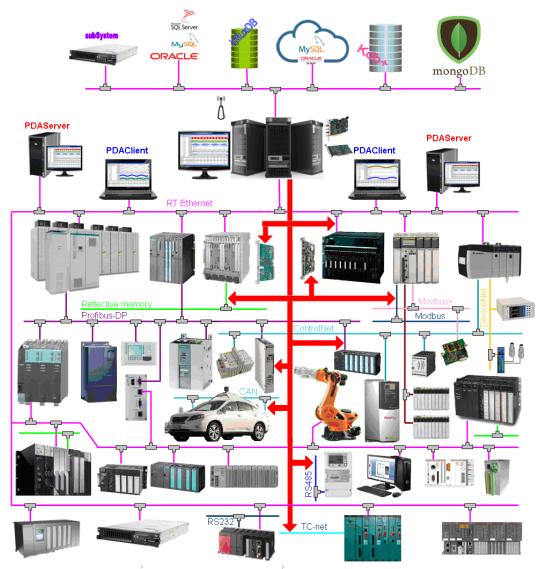


Figure 2.5 System network configuration and topology

2.6 PLC, field bus and vendors □ Collect mainstream PLC data □ Electric energy meter DL/T645-2007 \Box PowerPC, VxWorks □ Collect Intelligent controller data \Box Field bus data acquisition □ GE PACSystem □ Signal acquisition for remote AI, DI module GE 9070/9030 □ Wireless data acquisition □ ALSTOM HPCi □ Acquisition of reflective memory network □ ABB AC500/AC31 □ Acquisition of PC data BECKHOFF □ A variety of multiple PLC, infinite point □ WAGO MOOG Develop cooperatively PDA driver for special equipment OPC . □ Acquisition AI, DI signal of hardware card (orders) □ LogiCAD TCS CoDeSys IsaGraF $0 \sim 5V / 0 \sim \pm 5V / 1 \sim 5V / 0 \sim 10V / 0 \sim \pm 10V$ Modicon 984/Quantum/Premium/ $0 \sim 10 \text{mA} / 0 \sim \pm 10 \text{mA} / 4 \sim 20 \text{mA} / 0 \sim \pm 20 \text{mA}$ Momentum/M340 $0 \sim 1A / 0 \sim 5A / 0 \sim \pm 1A / 0 \sim \pm 5A$ Rockwell/Automation/Allen-Bradley mV weak signal MicroLogix 1000, 1100, 1200, 1500 16Bit A/D conversion, PDA time base 1~255ms SLC 500 CompactLogix 16 channel analog non-isolation FlexLogix PLC-5 16 channel analog : 3000VDC full isolation ControlLogix SoftLogix 5800 32 channel digital input **RSLogix** Channel may be grouped according to the type of signal-□ Westinghouse WDPF Module can be extended to hundreds of points by series **Ethernet UDP** □ Thermal resistance Pt100/Cu50 Ethernet TCP \Box Thermocouple J/ K/ T/ E/ R/ S/ B \Box S7 Ethernet TCP, iso □ Angular displacement, electronic scale □ Profinet □ potentiometer, Frequency signal □ Beckhoff Realtime Ethernet □ EtherCAT □ SSI synchronous serial interface The communication rate:250KHz, 500KHz, 1MHz, 2MHz \Box Beckhoff Ads \square MPI/DP Data length:16 / 32 bit \Box Realtime data file □ Profibus-DP □ Siemens S7-400 / FM458 □ Modbus, ModbusTCP Sampling period may be 2ms, Point to point □ RS232 / RS485 □ Siemens \$7-300 \$7-1200 \$7-1500 □ CANopen DeviceNet □ Siemens TDC, S7-200smart □ EGD □ GDM(Global data memory) □ EtherNet/IP □ Simotion SCOUT \Box Reflective memory □ Mitsubishi \Box Inverter and so on

 \Box Other special bus

2.7 PLC protocol service of data platform

2.7.1 Automation bus protocol classification

The automation system bus and protocol types are numerous, some are open, and some are dedicated. The following table is classified according to the communication medium.

N.	M - 1'-	Current d	PDA data acqu	PDA data acquisition scheme			
No.	Media	Speed	hardware	Software protocol	Example		
1	RS-232		Common serial port	PDA integrated	Modbus		
2	RS-485	<=115200bps	Convert to RS-232	PDA integrated			
3	RS-485	>115200bps	Special network	PDA integrated API/OPC gateway Third party interface			
4	Special RS-485		Special network	PDA integrated API/OPC gateway Third party interface	Profibus-DP CAN DeviceNet		
5	Ethernet	fast	Common ethetnet	PDA integrated	Profinet		
6	Ethernet	faster	Special network	PDA integrated API/OPC gateway Third party interface	EtherCAT		
7	Reflective Memory network	faster	Special network	PDA integrated API/OPC gateway Third party interface	GE Reflective Memory Siemens GDM TMEIC TC-net		
8	other						

PDA differently treats the different protocol understand for the same vendor in different periods or different manufacturers.

No program is needed for some PLC, Read directly data according to the variable address or symbol.

The real-time data interface is fully opened for the third party data platform which is convenient for the users to carry out data storage or processing neatly and diversely.

PDA system with a perfect communication protocol software development template may quickly develop unknown and future protocol.

2.7.2 Mainstream automation protocols

2.7.2.1 Process automation

AS-interface • BSAP[Bristol Standard Asynchronous Protocol] • CC-Link Industrial Networks • CIP[Common Industrial Protocol] • CAN bus[Control Area Network](CANopen • DeviceNet) • ControlNet • DF1 • DirectNET • EPA Ethernet for plant automation • EtherCAT[Ethernet for Control Automation Technology] • EGD[Ethernet Global Data, GE/ALSTOM HPCi] • Ethernet Powerlink •

EtherNet/IP[Rockwell ControlLogix/CompactLogix/MicroLogix] • FIP[Factory Instrumentation Protocol] • FINS • FF[FOUNDATION fieldbus](H1 • HSE) • GDM[Siemens Global Data Memory] • GE RFM[Reflective Memory, 5565/5576 VxWorks LogiCAD CoDeSys IsaGRAF]• GE SRTP[Service Request Transport Protocol, GE Fanuc 90/VersaMax/PACSystems] • HART Protocol • Honeywell SDS • HostLink • INTERBUS • IO-Link • Lightbus • Lonworks • MECHATROLINK • MelsecNet • Modbus/Modbus Tcp[Schneider-Modicon 984/Quantum…] • MP-bus[Modular Power Bus]• Optomux • PieP • Profibus • PROFINET • RAPIEnet[Real-time automation protocol for industrial ethernet] • Realtime Ethernet[Beckhoff] • SafetyBUS p • SERCOS interface • SERCOS III • Sinec H1 • Symotion • SynqNet • TMEIC TC-net • TTEthernet[Time-Triggered Ethernet] • WorldFip.

2.7.2.2 Industrial control system

EtherNet/IP-backplate[Rockwell ControlLogix/CompactLogix/MicroLogix] • GE SNP/SNPX • MTConnect • OPC[OLE for Process Control] • Profibus-MPI/DP • S7 Ethernet Tcp/iso[Siemens S7-400/S7-300/TDC/FM458].

2.7.2.3 Building automation

1-Wire • BACnet • C-Bus • CC-Link • DALI[Digital Addressable Lighting Interface] • DSI[Digital Signal Interface] • Dynet • Enocean • FIP • Idranet • KNX[EIB/BatiBus/EHSA] • LonTalk • Modbus • Modbus/Tcp • oBIX • VSCP • X10 • xAP[xAP Home Automation protocol] • xPL • ZigBee.

2.7.2.4 Power-system automation

CDT[Cyclic Digital Transmission] • IEC 60870 • (IEC 60870-5-101 • IEC 60870-5-102 • IEC 60870-5-103 • IEC 60870-5-104 • IEC 60870-6) • DNP3 • FIP • IEC 61850 • IEC 62351 • Modbus • Profibus.

2.7.2.5 Automatic meter reading

ANSI C12.18 • IEC 61107 • DLMS/IEC 62056 • DL/T645[Multi-function watt-hour meter communication protocol] • M-Bus • Modbus • ZigBee.

2.7.2.6 Automobile / Vehicle

AFDX[Avionics Full-Duplex Switched Ethernet] • ARINC 429 • CAN bus(ARINC 825 • SAE J1939 • NMEA 2000 • FMS) • FIP • FlexRay • IEBus • IDB-1394 • J1587 • J1708 • KWP2000[Keyword Protocol 2000] • SMARTwireX • UDS[Unified Diagnostic Services] • LIN[Local Interconnect Network] • MOST • VAN[Vehicle Area Network].

2.8 Data acquisition and analysis view

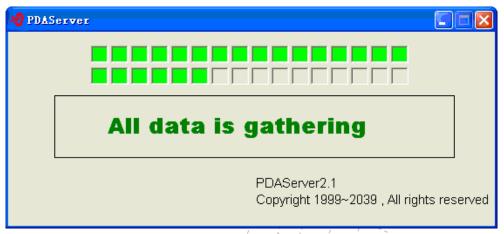


Figure 2.7 Operation interface of data acquisition software

Figure 2.6 ~ Figure 2.23 is for operation interface of analysis software.

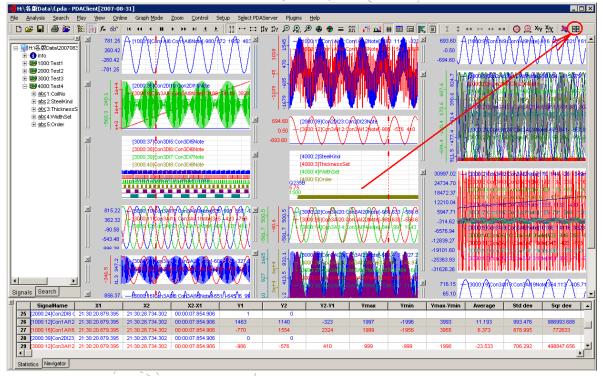


Figure 2.8 Main interface of analysis software and Multi column display of curves

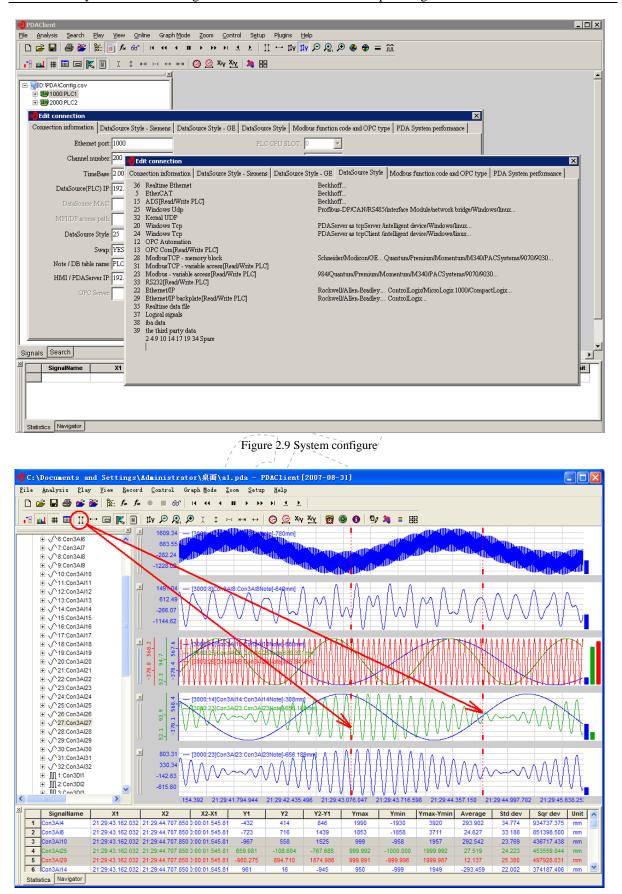


Figure 2.10 Dual x-axis mark

Figure 2.11 Dynamic y-axis and dual y-axis mark

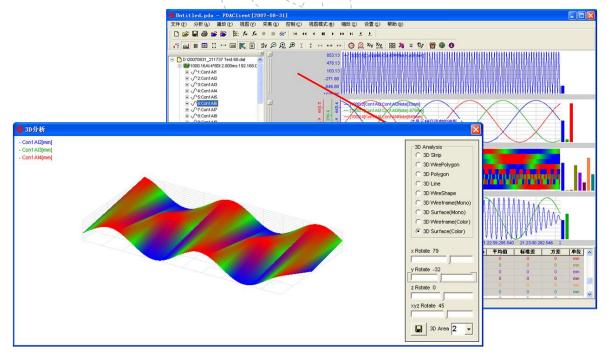


Figure 2.12 2D 3D view analysis

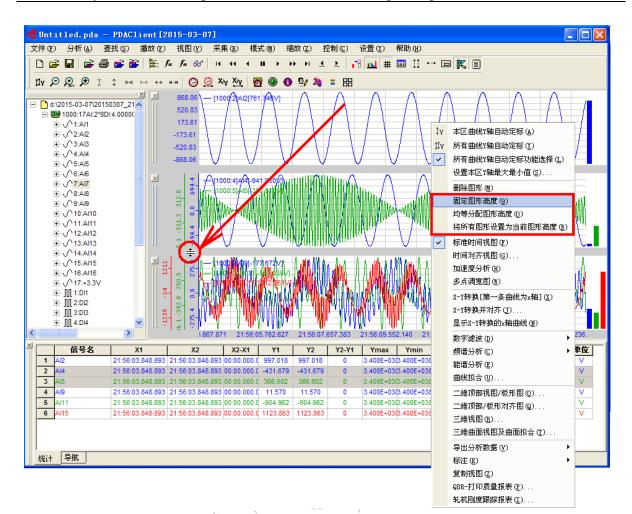


Figure 2.13 Height adjustment view

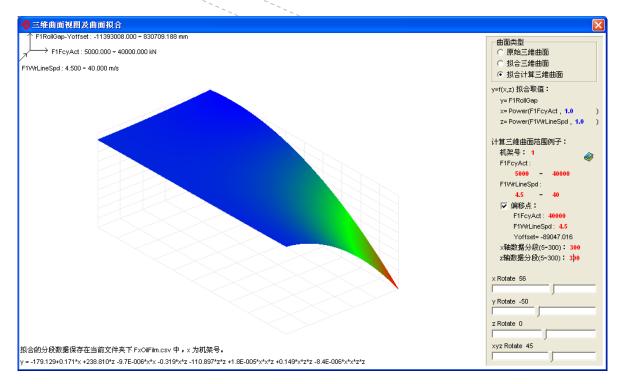


Figure 2.14 3D surface view and surface fitting

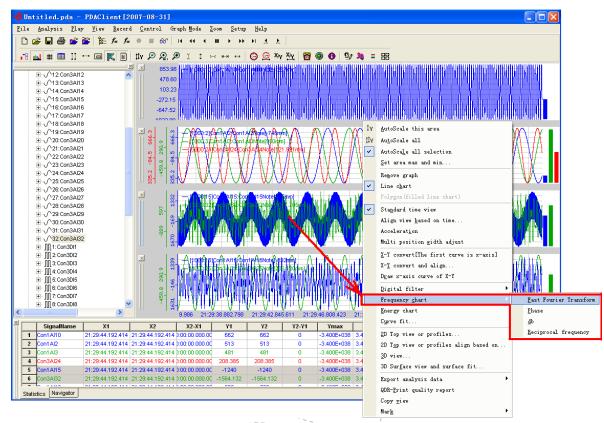


Figure 2.15 FFT- spectrum analysis

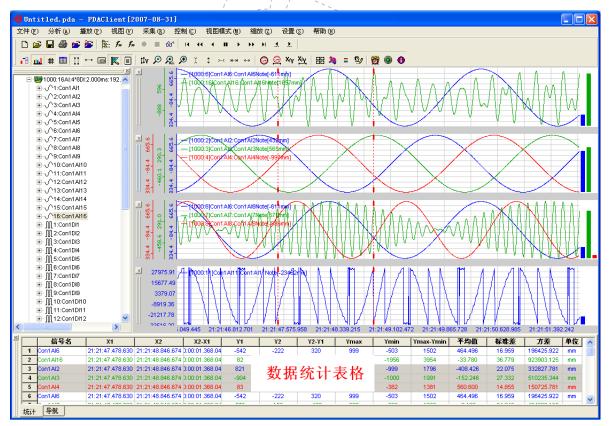


Figure 2.16 Data statistics

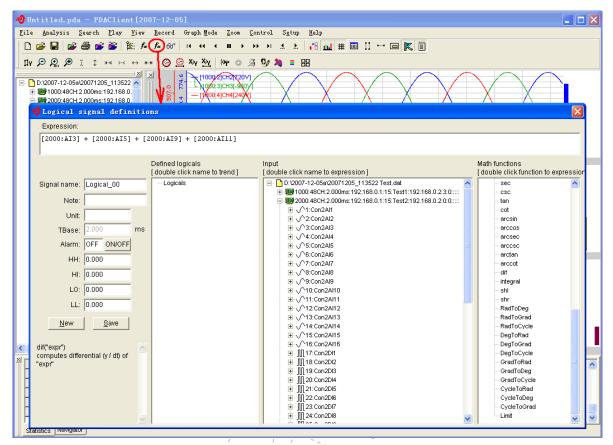


Figure 2.17 Logic signal - Expression

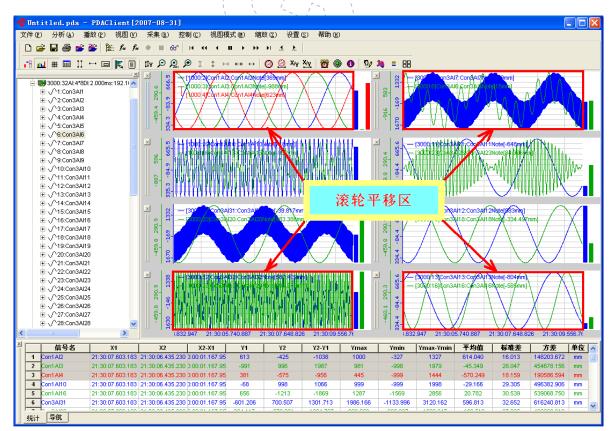
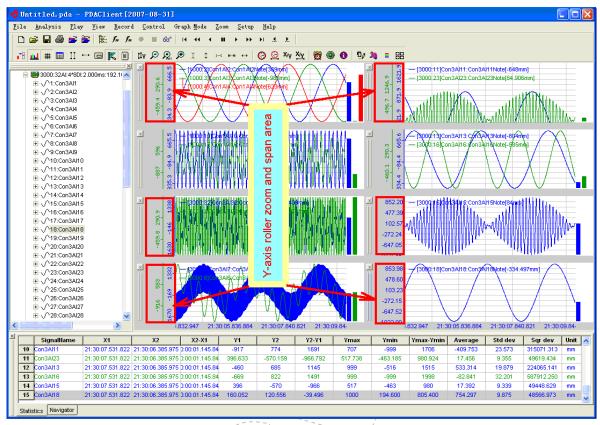



Figure 2.18 X-axis wheel trend figure translation

Figure 2.19 Y-axis wheel zoom and span

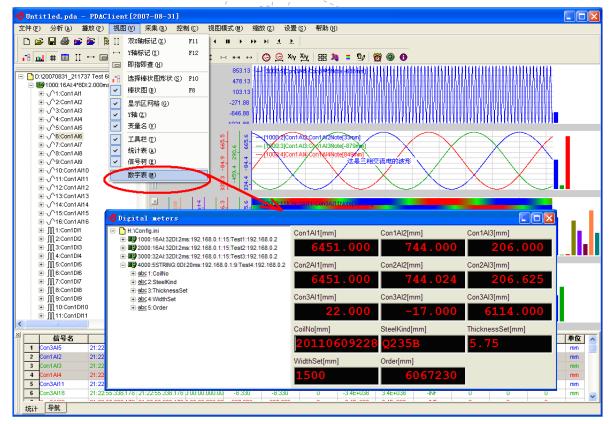
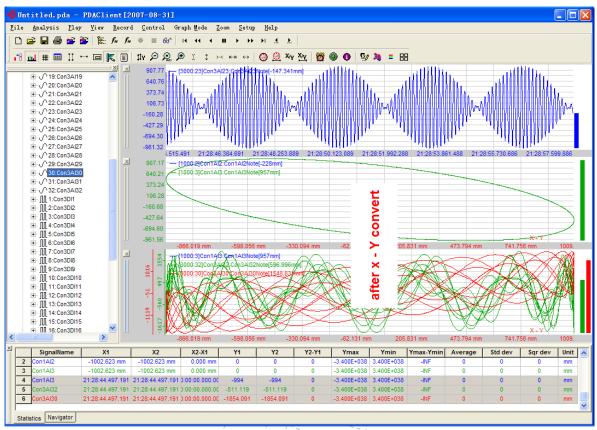



Figure 2.20 Digital table

Figure 2.21 X-Y convert and align

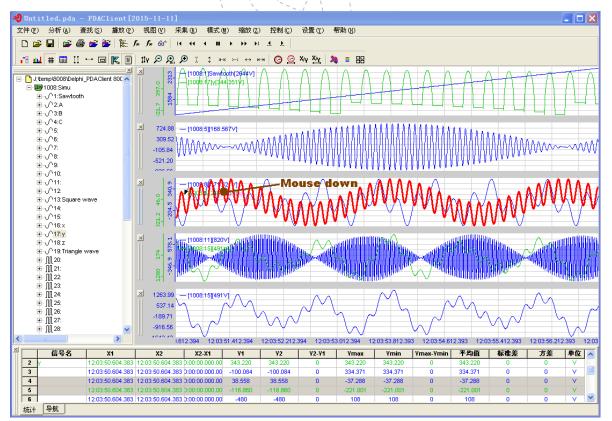
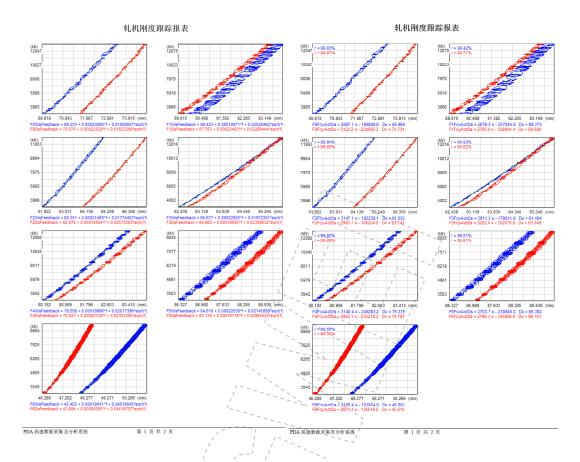



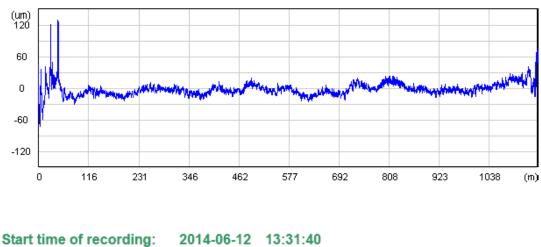
Figure 2.22 Curve annotation

			_				1	1	/		``	_				_				
(单领 kN/mm	()kN	1000	2000	3000	4000	5000	6000	7000	8000	9000	10000	11000	12000	13000	14000	15000	報径 (mm)	起始时间	持续 时间 (秒)	
	Os	1905	2267	2475	2619	2727	2812	2882	2941	2992	3037	3076	3111	3143	3172	3198	1476.28			
F0FcvActOs	Ds	2075	2458	2678	2828	2941	3030	3103	-3164	3217	3263	3304	3340	3373	3403	3430	751.76	2014-12-09	220	
TOTCYACIOS	Σk	3980	4725	5153	5447	5667	5842	5985	6106	6209	6300	6380	6451	6516	6574	6628	752.18	15:02:13	220	
	δk	-170	-191	-202	-209	-214	-218	-221	-223	-225	-226	-228	-229	-230	-231	-232	1472.24			
	Os	1696	2117	2378	2567_	2714	2833	2934	3021	3096	3163	3223	3277	3327	3372	3414	1464.06]	
F1FcvActOs	Ds	1676	2038	2254	2405	2521	2614	2691	2757	2813/	2863	2908	2947	2983	3016	3046	717.51	2014-12-09	239	
T II CYACIOS	Σk	3372	4155	4632	4972	5235	5448	5625	5777	5910	6026	6131	6225	6310	6388	6460	716.83	15:02:21	200	
	δk	20	79	124	161 -	193	219	243	264	283	300	316	330	343	356	367	1473.84			
	Os	2020	2421	2655	2818	2941	3038	3119	3187	3245	3297	3342	3383	3420	3453	3484	1458.29]	
F2FcvActOs	Ds	1686	2110	2375	2567	2717	2839	2942	3031	3109	3177	3239	3295	3346	3392	3435	769.88	2014-12-09	205	
1 ZI CYACIOS	Σk	3705	4532	5030	5385	5657	5878	6061	6218	6354	6474	6581	6678	6766	6846	6919	769.46	15:02:28	205	
	δk	334	311 /	281	251	224	199	-176	156	137	119	103	88	74	61	48	1459.92			
	Os	1848	2223	2443	2596	2712	2805	2881	2945	3001	3050	3093	3132	3167	3199	3228	1429.73	2014-12-09 15:02:30]	
F3FcyActOs	Ds	1830	2298	2591	2804	2971	3107	3222	3321	3408	3485	3554	3617	3674	3726	3775	768.94		178	
	Σk	3678	4521	5034	5400	5683	5912	6103	6267	6409	6535	6648	6749	6841	6925	7003	768.39			
	δk	18	-74 `	-147	-208	-259	-303	-341	-376	-407	-435	-461	-485	-507	-527	-547	1417.16			
	Os	1927 /	2350	2603	2782	2919	3029	3120	3198	3265	3324	3377	3424	3467	3506	3542	1437.15			
F4FcvActOs	Ds	1744	2153	2403	2581	2719	2830	2924	3003	3073	3134	3189	3238	3283	3324	3362	633.13	2014-12-09	168	
1 th cyricios	Σk	3671	4503	5006	5363	5638	5859	6044	6201	6338	6458	6566	6662	6750	6830	6904	632.73	15:02:17	15:02:17	
	δk	183	197 _	201	201	200	198	196	194	192	190	188	186	184	182	180	1442.76			
	Os	1771	2150	2374	2532	2652	2749	2829	2896	2955	3007	3053	3094	3131	3165	3196	1443.42			
F5FcvActOs	Ds	1613	2052	2333	2540	2705	2840	2955	3055	3143	3222	3292	3357	3415	3469	3520	642.03	2014-12-09	162	
	Σk	3384	4201	4707	5072	5357	5589	5784	5952	6098	6228	6345	6450	6546	6634	6716	641.81	15:02:25		
	δk	159	98	41	-8	-52	-92	-127	-159	-188	-215	-240	-263	-284	-305	-324	1432.57			
	Os	1211	1564	1795	1969	2108	2224	2323	2410	2487	2556	2619	2676	2728	2777	2822	1466.86]	
F6FcyActOs	Ds	1347	1859	2237	2544	2808	3040	3249	3440	3615	3779	3932	4075	4211	4340	4463	647.51	2014-12-09	203	
	Σk	2558	3423	4032	4513	4915	5264	5572	5850	6102	6335	6550	6751	6939	7117	7284	647.87	15:02:25	205	
	δk	-135	-296	-441	-575	-700	-816	-926	-1030	-1129	-1223	-1313	-1400	-1483	-1563	-1641	1470.60			
	Os																			
	Ds]	
	Σk]	
	δk																			

PDA高速数据采集及分析系统

第2页共2页

Figure 2.23 Stiffness measurement of rolling mill


Report_4522T01030

Coil No:	4522T010	30
Alloy Code:	SPHC	
Thickness:	1.82	mm
Width:	1252	mm

Body Average thickness Deviation: Body Min thickness Deviation:		
Body Max thickness Deviation:		
Strip width(average):	1258.8 mm	
Strip length:	1153.3 m	
10.0 m 1133.3	m	10.0 m

Tolerance: ± 30.0 um Percent: 98.64 %

126

Duration(Seconds):

Page: 1 of 1

Figure 2.24 QDR Report of quality data record

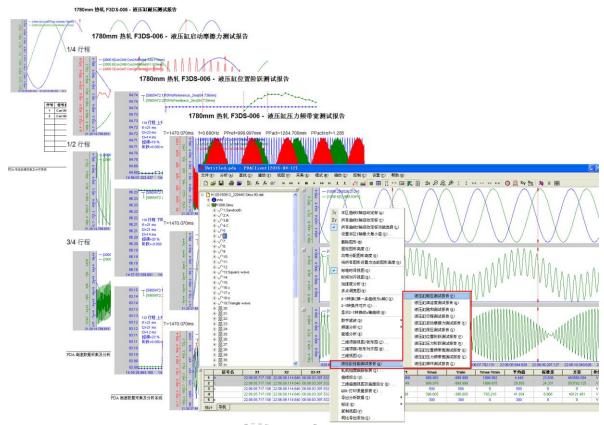


Figure 2.25 Performance test of large hydraulic cylinder

2.9 WinCC-PDA FTView-PDA Web-PDA

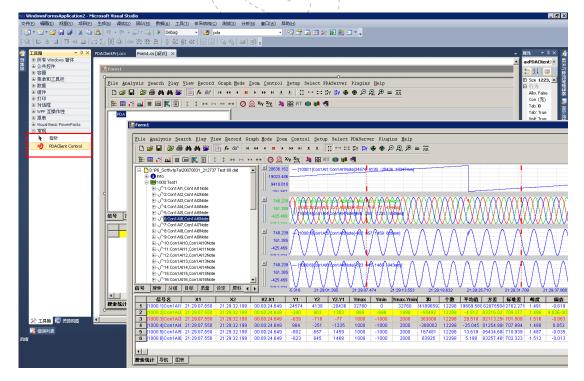
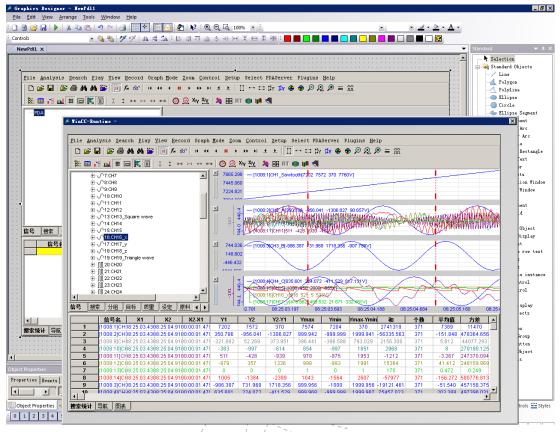
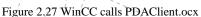




Figure 2.26 Call PDAClient.ocx in C#

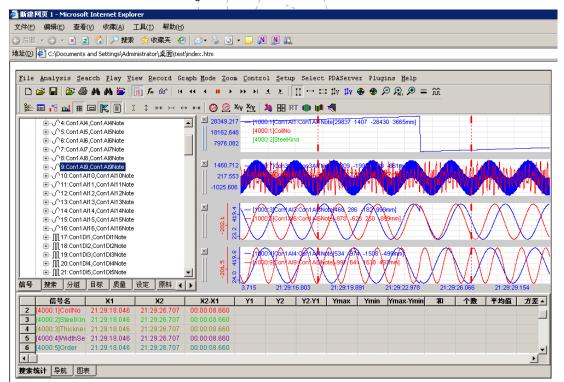


Figure 2.28 Call PDAClient.ocx in the browser

Z FactoryTalk View Studio - View S	de Edition (Local Station)	- 2 🕰
	s Arrange Animation Tools Window Help	
2 B 🐵 🗅 🛩 🛐 🗆 🚳		
▶9A差コCOC丶	♫ㅅ□○○ॡॖॖॖॖॖॖॖॖॖॖॖॖॖॖॖॖॖॖॖॖॖॖॖॖॖॖॖॖॖॖॖॖॖॖॖ	
Explorer - InstantFizz_SE		Object Explorer 4 = ×
Bocal (WIN-76513RIHTI -	Untitled - /InstantFizz_SE// (Display)	📾 🖌 Display
instantFizz_SE		
Runtime Security	File Analysis Search Flay Yiew Record Graph Mode Joon Control Setup Select FMServer Flugins Help	
System	D & B & & A A & A & H + + + + + H & L = = = = = = = = = = = = = = = =	
D Command Li		
🕀 🔄 HMI Tags	Chrogenn Fies (x86)/Rockwel + 2 gradent generation generation and a set of the set of th	
- 💣 Tags		
🖯 🔤 Graphics 🗉		
Displays		
- alarm ban		
alarmlogy		
- 🗋 alarms		
- alarms_val	B-U-SCHS THE	
- alarmstatu	thu Y NOTING AND A STATE AND A STA	
B blending	B J 11 CH11 B BEAAA \- [10]62(CH3_)(App.564/3p7.562/2(7.206/f) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Highlighting on Settings
- in op - proc		Expand Collapse Help
- i cip - valve		Property Panel + *
- 🗊 cip overvic		
- initing		No ActiveK Controls Selected
- labeling		Properties Connections
-B languages -B Logix ALM	the other interpretation of the second - good the set of the second - good the set of the second - good the set of the se	
- Dogix ALN	* # #119921 0.00 % M * A * A * A * A * A * A * A * A * A *	
- Logix ALV	⊕ 25 seesa - 1	
- Distance	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
B Logix_ALV		
- Dogix ALV	【 <u>信号名 X1 X2 X2.X1 Y1 Y2 V2.Y1 Ymax Ymini Yna Yna Ymini Yna Yna Ymini Yna Yna Y</u>	
- Logix_D2S - M Logix_D2S	5 1008:15(2H15 013052,359 013103,207 0000.1048 305 1510 1205 1679 1625 3304 10076 2710 4.013 0372887777.000 2.024 -0.042 487 -509 884 15.1 6 1008:15(2H15 013052,359 013103,207 0000.1048 509 698 9 509 590 9 1891332 2716 507 505 5263 2.294 5738 -2.014 599 699 699 699 699 690 1891332 1016 5756 5263 2.294 5738 -2.014 599 699 699 699 690 1891332 1016 5756 5263 2.294 5738 -2.014 599 599 699 699 690 199 1891332 1016 5756 5263 2.294 5738 -2.014 599 599 599 590 599 590 590 1891332 1016 5756 5263 2.294 5738 -2.014 599 599 599 590 590 590 590 590 590 590	
Logix, Hels	T 1008.3/CH3_8 0130.52.359 01.31.03.207 00.00.10.848 450.564 907.852 277.288 1000.000 1000 2000.000 13772.442 2710 5.082 00693.12 707.597 1.502 -0.015 516.914 458 953 729.212 14.4	
a mgr_dashi	■ 1008+024-2_013052259 013103207 00010848 987437 817042 +170394 1000 20008000 20038754 2710 -7855 98208127 1024-885 98207 1027 04482 1005 0.012 - 998807 987762 -897281738	
a navigation	1000-1011 01002305 013103201 00.00 1066 320051 00221 122300 05510 1062633 135255 225072 210 1060 2251010 30044 2220 120200 45142 115225 1302203 0	
packaging	被素鏡计 导致 西水	
plant over -		
Application Communic	M huttet .	Help

Figure 2.29 FactoryTalk View calls PDAClient.ocx

2.10 Using PDAClient under Linux

Connect to the Internet under Ubuntu and sudo apt install wine64 to install a 64 bit Windows emulator.

Copy PDAClient.exe to Linux, enter the directory where PDAClient.exe is located, right-click Open in Terminal, and run wine PDAClient.exe to directly open the PDAClient analysis tool.

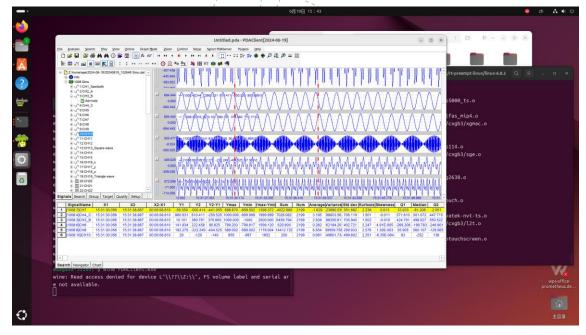


Figure 2.30 Using PDAClient.exe in Linux

2.11 pdaCloud

pdaCloud in Config.csv specifies whether pdaCloud.exe starts automatically.

pdaCloud.exe may gengeate ①day file list file, ②day second level data file, ③appropriate data file found and copy them and ④log file to the cloud synchronization folder specified by CloudDir of Config.csv.

pdaCloud.exe sends ①the day list file and ②log file to the Email specified by Config.csv.

5	还原(<u>R</u>)		apter:		
	移动(<u>M</u>)		D:\PDA\BigData	Cloud dir: D:\PDA	
	大小(5)		to:		
-	最小化(<u>N</u>)		bg		
	最大化(3)				- 🖻
×	关闭(<u>C</u>)	Alt+F4	0201_172254 Simu_21	966_201106092549_Q235B_5.75_	1. Send
~	Write realtime data to cloud databa	ise	10201 Simu.Lst		
	English 中文简体(<u>C</u>) Local language "language.ini" English string to "language.ini" Delete "language.ini" Manual About pdaCloud		0201_224317 Simu_14 0201_225318 Simu_17 0201_230318 Simu_17 0201_230318 Simu_12 0201_231318 Simu_17 0201_232319 Simu_23 0201_233319 Simu_28 - 0201_234320 Simu_10	102_201106092833_Q2358_5.75_ 36_201106092843_Q2358_5.75_1 29_201106092852_Q2358_5.75_1 272_201106092861_Q2358_5.75_ 415_201106092870_Q2358_5.75_ 059_201106092879_Q2358_5.75_1 202_201106092898_Q2358_5.75_1 27_201106092907_Q2358_5.75_1 27_201106092907_Q2358_5.75_1	500.dat 500.dat 1500.da 1500.da 1500.da 1500.da 500.dat
	Set paths of PDAServer				
	The end third data file:				
TI	he end second data file:				
	The last data file:				

Figure 2.31 Prepare data for pdaCloud

2.12 Millisecond level high-speed data acquisition for the entire factory

PDA supports data collection of 30000 points within 10 milliseconds. Slow or trigger signals in the entire factory can be saved at a unified high speed. If the data exceeds 30000 points, multiple PDA servers can be used. PDA servers reduce the frequency of the collected signals and write them to multiple relational databases such as SQL Server, MySQL, and ORACLE. Millisecond level signals are written to temporal databases such as InfluxDB. Other subsystems require real-time data to be forwarded by PDA servers at a high speed or reduced frequency.

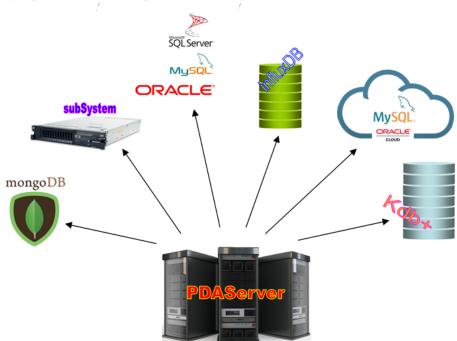


Figure 2.32 Data collected by PDA saved to database

2.13 High speed data forwarding

The PDA server adds a multi port network card. In principle, the data required by other systems is not directly connected to the L1 controller, but is obtained through PDA forwarding. Different network segments are forwarded through different network ports, which can save a lot of PLC resources.

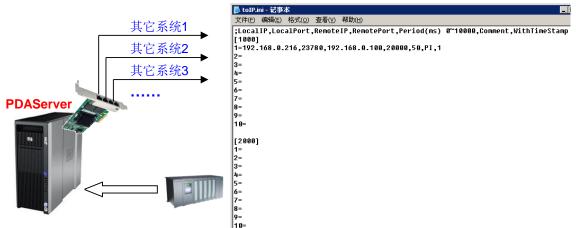


Figure 2.33 Setting up high-speed data forwarding to multiple locations

3 LTA - Long historical Trend Analysis system

In addition to millisecond level data records, slowly changing production processes require monthly, quarterly, and annual curve analysis. The PDA system can collect multiple frequency reduction data at once, allowing for rapid analysis of long-term trends (Long Trend Analysis). It can be widely used in process industries such as blast furnaces, heating furnaces, petrochemicals, beer, and the analysis of parameters such as liquid level and temperature.

The main significance of long-term trend analysis is twofold: firstly, to understand the trend and regularity of phenomena over time; The second is to predict the future development prospects and trends of phenomena. The reason why temporal data has long-term trends is because it is influenced by certain basic and decisive factors. The stronger the influence of these dominant factors, the more obvious the long-term trend. Therefore, by analyzing the long-term trends of time series data, the internal mechanisms of phenomenon development and changes can be grasped, and the effectiveness of policies and measures taken in the past can be evaluated; The third is to remove long-term trend components from the time series, in order to facilitate the decomposition of other types of influencing factors, such as seasonal changes, cyclical changes, and irregular changes.

The main methods for measuring long-term trend values include: extended time interval method, moving average method, and least squares method. The extended time interval method refers to the method of eliminating fluctuations in the values of various indicators caused by accidental factors due to the short time interval by expanding the time of each indicator in the dynamic sequence, so that the smoothed dynamic sequence can significantly reflect the overall trend of phenomenon development and changes. The moving average method refers to the method of moving a dynamic sequence period by period to expand the time interval, while calculating the time series average for each indicator value of a new dynamic sequence that has already expanded the time interval, thereby forming a derived dynamic sequence from the moving average. The series of moving time series averages obtained through moving average are the trend values of their corresponding periods. The least squares method, also known as the least squares method, is a commonly used method for estimating regression model parameters. The basic principle is to require the sum of squares of the deviations between the actual value and the trend value to be the smallest, in order to fit an excellent trend model and determine long-term trends.

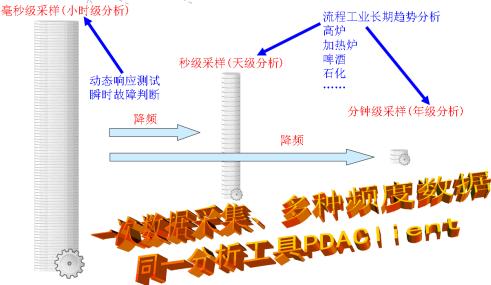


Figure 3.1 PDA Long term historical Trend Data Frequency Reduction

A high-speed acquisition can obtain data of multiple frequencies, and changing the backup point to a formal point or adding or reducing points at the end of the connection does not affect the normal conversion work. LTAServer.exe is located in the PDA system file directory, and is converted based on the data files generated by PDA and saved in the directory specified by BigDataDir in Config.csv. The generated data files are saved in the directory specified by BigDataDir.

LTAServer scan and convert at startup and every 12 hours interval thereafter.

3.1 Millisecond level - hourly data analysis

Collect data every 10 milliseconds and generate a data file every 10 minutes.

3.2 Second level - monthly data analysis

Collect data once a second and generate a data file once a day.

3.3 10 second level - quarterly annual data analysis

Collect data every 10 seconds, generate one data file every week, and 52 data files every year.

3.4 60 second level - annual data analysis

Collect data every 60 seconds, generate one data file in January, and 12 data files in a year.

3.5 7-days data curve at the second level for a certain project

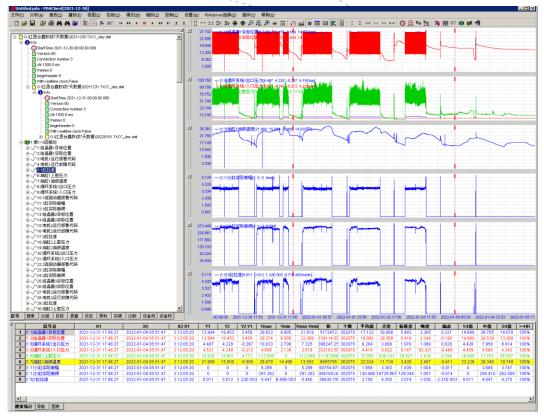


Figure 3.2 7-days data curve with reduced frequency to second level

3.6 Converting long-term historical trend files of a blast furnace AB to PDA format

AB company has a .dat file that records long-term historical trends, but its opening speed is slow. HistorianToPDA.exe can convert this dat file into a PDA format. dat file, which can be used to quickly open trend charts for several months using PDAClient. The following figure shows the original data file for a day, with a sampling cycle of 1 second.

🚞 G:\AB Historian 高炉			
文件(E) 编辑(E) 查看(∀) 收藏(A) 工具(I) 帮助)(H)	
🔇 后退 👻 🕤 👻 🏂 📔 🖉)文件夹 🛛 🕞 🧯	» 🗙 🍤 🖽 -	
地址(D) 🗁 G:\AB Historian 高炉			
名称 🔺	大小	类型	修改日期
2022		文件夹	2022-3-21 8:18
2022 03 16 0000 (Float).DAT	6,179,866 KB	PDA data File	2022-3-17 0:00
2022 03 16 0000 (String).DAT	1 KB	PDA data File	2022-4-20 10:38
👬 2022 03 16 0000 (Tagname).DAT	485 KB	PDA data File	2022-4-20 10:38

Figure 3.3 Long term raw data of AB company

The following figure shows a data file converted to PDA format with a compression rate close to 100

times.

/		í.	
文件(E) 编辑(E) 查看(У) 收藏(A) 工具(I) 帮助(H)		
🕓 后退 🔹 🕤 🖌 🏂 📔 操索 🌔 文件夹 🛛 📴 🤒	× 9 🔤 -		
地址(D) 🗁 G:\AB Historian 高炉\2022			
名称 🔺	大小	类型	修改日期
2022 03 16 0000 (Float).pda.dat	69,256 KB	PDA data File	2022-3-20 21:00
20 PDAClient.exe	5,336 KB	应用程序	2022-4-15 10:19

Figure 3.4 Conversion of AB Company's Long Term Raw Data to PDA Format

The following figure shows the trend curve.

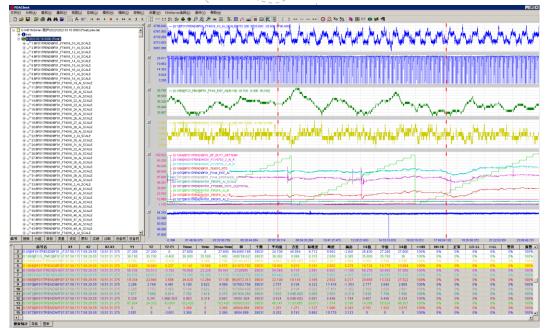


Figure 3.5 Analysis of AB Company's Long Term Raw Data Conversion Using PDA

4 HDS - open time series high frequency Historical database

The full name of a time series database is a time series database, which is mainly used to process data with time labels (changing in chronological order, i.e. time serialization). Data with time labels is also known as time series data.

Time series data is mainly collected and generated by various types of real-time monitoring, inspection, and analysis equipment in the metallurgical, power, chemical, meteorological, and geographic information industries. The typical characteristics of these industrial data are: fast generation frequency (each monitoring point can generate multiple pieces of data within one second), severe dependence on collection time (each piece of data requires a unique time) Multiple monitoring points have a large amount of information (conventional real-time monitoring systems have thousands of monitoring points, which generate data every second and tens of GB of data every day).

Commonly used temporal databases include InfluxDB, KDb+, Prometheus, Graphite, RRDtool, TimescaleDB, Apache Druid, Fauna, OpenTSDB, GridDB, DolphinDB, KairosDB, etc.

Open high frequency time series Historical Database Server stores PDA millisecond level high-frequency data into the temporal database and can access it through SQL statements.

🗁 D:\influxDB							
文件(E) 编辑(E) 查看(У) 收	藏(<u>A)</u> 工具(<u>T</u>)	帮助(<u>H</u>)					
🔇 后退 👻 🗇 📌 捜索 🌔 文件夹 🛛 🕼 🌚 🗙 🍤 🛄 -							
地址(D) 🗁 D:\influxDB							
名称 🔺	大小	类型	修改日期				
influx.exe	54,729 KB	应用程序	2019-10-27 23:32				
influx_inspect.exe	19,059 KB	应用程序	2019-10-27 23:32				
influx_stress.exe	11,340 KB	应用程序	2019-10-27 23:32				
influx_tsm.exe	20,542 KB	应用程序	2019-10-27 23:32				
influxd.exe	66,378 KB	应用程序	2019-10-27 23:32				
🥵 influxdb.conf	21 KB	配置设置	2019-10-27 23:32				
20 PDAWatchDog.exe	485 KB	应用程序	2022-1-20 8:29				

Figure 4.1 InfluxDB Time Series Database System Files

dbUpgradeTSA.exe~dbUpgradeTSL.exe is located in the PDA or HDServer directory. It converts the data files collected by PDA to. csv files supported by InfluxDB at the original sampling frequency or frequency reduction losslessly, and imports them offline in bulk into InfluxDB. The table structure is identical to the configuration of Config.csv.

III Eðjinfluxðinflux.exe	-	×
Using database PDA		^
> show measurements		
name: measurements		
name		
10PTC1_4		
TOPIC2_1 TOPIC2_2		
TOPIC2_2 TOPIC2_3		
TOPIC2_4		
TOPIC2_5		
TOPIC2_6		
TOPIC3 1		
TOPIC3_2		
TOPIC3_3		
TOPIC3_4		
TOPIC3 5		
TOPIC3_6		
TOPIC3_7		
TOPIC4_1		
TOPIC4_2		
TOPIC4_3		
TOPIC4_4		
TOPIC4_5		
TOPIC4_6		
TOPIC4_7		
		~

Figure 4.2 Upgrading PDA Configuration to InfluxDB

dbUpgradeTS has multiple processes, each converting several connections to ensure that the write timing database can keep up with the speed of PDA generating data files, Each process scans PDA data files every 2 minutes.

E Ehrfluchinflucklasse -	
2021-11-25707:50:52.1645072 info Executing query ("log_id": "0YOIC8_C000", "service": "query": "CREATE DATABASE PDA") [httpd:/se0::3502:64:44b1:77c1xU大网 4 (25/Nov/2021:15:50:52 +0800) "POST /query?do=Mapped=Ma 202021-11-25107:50152.468:44b1:77c1xU大网 4 (25/Nov/2021:15:50:52.46800) "POST /query?do=Mapped=Mappe	8c8a-000
http:// Fe@0.150021840-481-77c1%以大阿 4 [25/Nov/2021:15:50:52 +0800] "POST /#rite?comsistency*all&db=PDM&precision*meMzp* HTTP/1.1" 204 0 ~- "influxDB importer/" 6966690e-4d:4-11ec 02090f7004 1941147	-8c8b-00
httpd [s80::580::884:d81:77:8N(J;M] 4 - [25/Nov/2021:15:50:58 4000] 'GET /sing HTTP/1.1' 204 0' - " IntLuRESmall/1.0.9' 644f4f4-464-11ec-868-0012997704 0 httpd [s80::884:d81:77:8N(J;M] 4 - [25/Nov/2021:15:50:58 4000] 'GET /sing HTTP/1.1' 204 0' - " intLuRES importery" (645921-464-11ec-868-0012997704 0 2021:1-25707:50:58.880492 info Executing query [log_id: '0701C8 GOOU', 'service': query', 'Query': 'CRARE DATABASE FNA') httpd [s80::3502:884:d81:77:8N(J;M] 4 - [25/Nov/2021:15:50:58 40000) 'FET /sing HTTP/1.1' 204 0' -" intLuRES importery' bittpd [s80::3502:884:d81:77:8N(J;M] 4 - [25/Nov/2021:15:50:58 40000) 'FET /service': query', 'Query': 'CRARE DATABASE FNA') httpd [s80::3502:884:d81:77:8N(J;M] 4 - [25/Nov/2021:15:50:58 40000) 'FET /service': query', 'Query': 'CRARE DATABASE FNA')	-8c8e-000
1299/704 0 [httpd] fe80::2502:84b:1481:77c1%以太网 4 [25/Nov/2021:15:50:58 +0800] "POST /write?consistency=all&db=PDM&precision=me&p= HTTP/1.1" 204 0 "-" "influtDB importer/" 6d8558e9-4dc4-llec 0.2999/7004 1492146	-8c8f-00
0.29971009,1493100 2022111-25107(51:00.7236122 info Cache snapshot (start) ("log_id": "070108_6000", "engine": "smal", "trace_id": "071X3151000", "op_name": "tsml_cache_snapshot", "op_event": "start 2021-11-25107(51:00.1236122 info Snapshot for path written ('log_id': "070108_6000", "engine": "tsml", "trace_id": "071X3151000", "op_name": "tsml_cache_snapshot", "op_event": "start X3381\:influench\data\VBM\utukutgent\\4", "dattartin": "284.781me")	:"} C:\\Users
2021-11-25707-51-01.1025022 info Cache snapshot (end) ("log_id": "OYOICS_0000", "engine": "tmal,", "trace_id": "OYDISSID00", "op_name": "tmal_cache_snapshot, "op_event": "end", mend": "588.751mm")	"op_ela
2021-1-25707/51:01.7220382 into TSM compaction (start) ("log_id": "07010%_6000", "engine": "tsml", "tsml_evel": 1, "tsml_strategy": "level", "trace_id": "0711X3m00000", "cp_name" Compact groups, 'o event': "start]	: "tsml_
2021-11-25707/51:01.7220022 into Beginning compaction ("log_id": "0701C8_6000", "engine": "tmml, "tmml_strategy": "level", "trace_id": "071X3m00000", "op_name" Compact_group", "tmml_file_m": 8)	: "tsml_
2021-11-35707/51-01,7300382 into Compacting file [log_idf: '0Y0108_C0000', "engine"; "faul_strister; ', tranl_strategy': 'level', 'trace_id': '0Y1X3m00000', 'op_name': 'teml_ ercup', 'teml_index': 0, 'teml_ifile': 'C'\UBERYLSKS\LUBER	_compact_
2021-11-25T07151-01,7310372 into Compositing file files is ''''''''''''''''''''''''''''''''''	_compact_
2021-11-25707-51:01.7310772 info Compacting file (lag id': "070128_0000", "engine": "tenl, "tenl, "tenl, strategy": "level", "trace_id": "071X3m00000", "op_name": "tenl, tenl, tenl, "tenl, tenl, tenl, tenl, tenl, tenl, tenl, "tenl, tenl, tenl, "tenl, tenl, tenl, "tenl, tenl, t	_compact_
2021-11-2570751-01.7220822 into Composting file (log_id': '070102_6000', "engine': frami_strategy': level', 'trace_id': '0711X2m0000', 'op_name': 'tanl_ group', 'tanl_index', 3: tanl_ifie': '()/UBervlX35N; UPAN uotegen441(0000018-0000000.tum')	compact_
2021-11-2570751:01.7220502 info Compacting file (log_id: "OVICE GOOD", "engine": "ten], "ten]_strategy: "level", "trace_id: "OVIXBa0000", "op_name": "ten] eroup", "ten].inde": 4, "ten_ifie": "(Vikere\USE).influxeh\User\USE).influxeh\User\USE).influxeh\User\USE).influxeh\User\USE	_compact_
2021-11-2570751:01.7220302 info Compacting file ("logid"; "OVO[C8 GOOD", "engline"; "teml, "teml, avel"; 1, "teml_strategy": "level", "trace_id": "OVIX3m00000", "op_name": "teml ercup", "teml index": 5, "sum] file: "C:/\UleareylXSX:\influxd\Ulear	compact_
2021-11-25707:51:01.7330382 into Compacting file (log_id: "070108_G000", "empine", "taml_tevel", 1, "taml_strategy": "level", "trace_id": "071XSa00000", "op_name": "taml_ group", "tamlinde": 6, "tamlifie: "c:\\Usere\LSSN\.influxd\.Viata\\VFAb.\User\LAN.Viata\\VFAb.\VFAb.\User\LAN.Viata\\VFAb.\VFAb.\User\LAN.Viata\\VFAb.\VFAb.\User\LAN.Viata\\VFAb.\V	
2021-1/25707:51:01.7330362 info Compacting file ('log_id': '070108_0000', "engine": "taml, "taml]etrategy": "level", "trace_id": "071X3m00000', "op_name": "tsml_ ercup", "teml index": 7, "taml file: "C:\UberryList\Lintlawk\UberListoren\L\U00000000000000000000000000000000000	
2021-11-25T07:51:04.1316642 info Compacted file ('10g_id': '0YOIC8,0000', 'engine': "taml, 'taml,' taml_strategy': 'level', 'trace_id': '0YIX3m00000', 'op_name': "taml, group, 'taml index': 0, 'taml file': 'C:\UbervikSN\.influxeN\.Vata\VBA.Vata\VBA.Vata+VBA.VataveN\.VAtaveN.VBA.Va	
2021-1-25707:51:04.121662 into Finished compacting files "[log_idf: "OVOIC8_GOOO", "engine": "taml", "taml_strategy": "tawl_strategy": "level", "trace_id": "OVIX3M00000", "t "faml_compact renou," "taml files n": "tawl files not tawl.", "tawl.", "tawl files not tawl.", "tawl.", "tawl	op_name"
2021-11-2510/51104.1220702 / info TSM compaction (end) ('log_id': "0YDIC8_6000", "engine": "tmml", "tsml_level": 1, "tsml_strategy": "level", "trace_id': "0YDE8600000", "op_name" compact_troup, "op_event: "end", "op_alpased': "2044.0232m")	: "tsml_

Figure 4.3 Batch Import of PDA Data to InfluxDB

Cancel the quick editing mode and insertion mode in the Console window of the influx service program to avoid input interference.

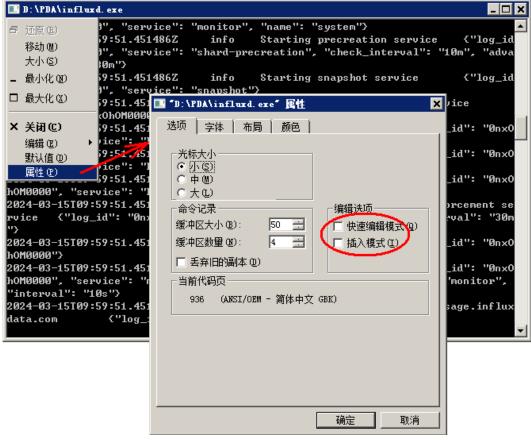


Figure 4.4 set influxd console mode

5 DBU - Database system and Upgrade tools

The database supports SQL statements and has good openness. The Database Upgrade tool upgrades the high-frequency data collected by PDA to a relational and sequential database, achieving the unity of PDA collection points and database table names, field names, and data. It supports offline and online methods.

5.1 PDA → SQLServer Realtime Data

[TableNamel] 变化就写列式数据库表

dbUpgradeRt.ini configures the trigger conditions for real-time database writing and which variables are written to which database table.

PDA can save the collected data to relational databases such as SQL Server/MySQL/Oracle in real-time according to the configured number of cycles through dbUpgradeRtA.exe, dbUpgradeRtB.exe~dbUpgradeRtJ.exe. There are seven triggering methods for data storage as shown in the following figure. During the first run, the database table is automatically created according to the configuration of dbUpgradeRtA.ini, dbUpgradeRtB.ini~dbUpgradeRtJ.ini. After the configuration changes, the table structure is manually modified according to the ini configuration.

Trigger=1000,3 1=1000,1,第1个变量 2=1000,3,第2个变量 3=1000,6,第3个变量 4=2000,2 5=3000,5,第5个变量 6=4000,3,第6个变量 [TableName2] 0->非0 写列式数据库表 Edge=2000.32 1=1000,21,TableName2第1个变量 2=1000,13,TableName2第2个变量 3=3000,69,TableName2第3个变量 4=2000,22 5=3000,15.TableName2第5个变量 6=3000,20,TableName2第6个变量 [TableName3] TriggerPort, TriggerCH, 0->非0 写行式数据库表, 第1个变量决定了字段的数据类型 aPLCTimestamp EdgeRowDB= 1000, 26, aDateTime, aTimestamp, aPort, aCH, aId, aName, aValue, aPLCTimestamp, 53 1000, 1, 重新取个名字不用Config.csv中的名字1 1000, 3, 重新取个名字不用Config.csv中的名字2 1= 2= 3000, 69, 重新取个名字不用Config.csv中的名字3 4000, 2, 重新取个名字不用Config.csv中的名字4 3= 4= 3000, 70, 重新取个名字不用Config.csv中的名字5 5= [TableName4] TriggerPort,TriggerCH,PLCTimestampPort,PLCTimestampCH,0->非0 下述各行写一次数据库表,第1行决定所表 ,26 ,3000 ,22 ,DateTime,Timestamp, aIdl,aFieldl,aField2,aF EdgeRow= 1000 1= 3000,70, 1000,3, 1 2= 1000,27, 1000,3, 1 3= 3000,69, 3000,70 4= 1000.29. 4000.5 5= 1000,30, 4000,3 [AlarmTableNamel] EdgeRising 下述每行第1个变量各自 0->非0 写行式数据库表,第1行决定所有20个字段的数据类型 dbWritz=1, aFieldl,aField2,aField3,aField4, aField5, aField6, aField7, aField8, aField9,aField10,aField11,aF 1=1000,26, 1000,3, 1000,5, 4000,3, 3000,9, 4000,1 , 1000,11, 2000,12, 1000,13, 3000,15, 1000,17 2=1000,27, 2000,3, 1000,5, 2000,7, 3000,9, 1000,10, 1000,11, 2000,12, 1000,13, 3000,15, 1000,17 1=1000,26, 2=1000,27, 3=1000.28. 3000,6, 4000,1 2000,9, 4000,2 4=1000,29, 5=1000,30, 4000,5, 4000,3 [AlarmTableName2] EdgeDropping 下述每行第1个变量各自 非0->0 写行式数据库表,第1行决定所有20个字段的数据类型 dbWrite=2, aFieldl,aField2,aField3,aField4, aField5, aField6, aField7, aField8, aField9,aField10,aField11,aF 2000,2, 2000,3, 4000,2, 2000,7, 2000,9, 1000,10, 2000,11, 1000,12, 2000,13, 1000,15 2000,2, 2000,3, 2000,5, 2000,7, 2000,9, 1000,10, 2000,11, 1000,12, 2000,13, 1000,15 1=3000,11, 2=3000,23, 3=2000,36, 2000,2 4=2000,12, 3000,3 5=3000,15, 3000.3 [AlarmTableName3] EdgeChanging 下述每行第1个变量各自 变化 就写行式数据库表,第1行决定所有20个字段的数据类型 dbWrite=3, aField1, aField2, aField3,aField4, aField5, aField6, aField7, aField8, aField9,aField10,aField11, 1=1000,1, 2000,6, 2000,3, 2000,5, 2000,7, 4000,4, 1000,10, 2000,11, 1000,12, 2000,13, 1000,15 2=1000,3, 2000,6, 3000,69, 3000,70 3=2000,6, 2000,7 4=3000,2, 2000,7, 2000,3, 2000,5, 2000,7, 2000,9, 1000,10, 2000,11, 1000,12, 2000,13, 1000,15 5=3000,5, 2000.9

Figure 5.1 Seven triggering methods for real-time database writing

5.2 PDA → SQLServer Historical Data

dbUpgrade.exe can upscale historical data to a relational database, and automatically create database tables by pressing Config.csv during the first run. It can be downscaled and upscaled.

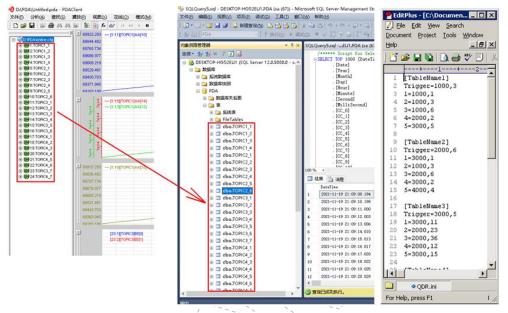


Figure 5.2 PDA configuration upgrade to relational database

5.3 PDA → InfluxDB realtime data

dbUpgradeRtTS.ini configures the trigger conditions for real-time database writing and which variables are written to which database table.

dbUpgradeRtTS.exe calls influx_Rt.exe writes the database table in real-time according to the configuration file dbUpgradeRtTS.ini when one of the seven triggering conditions is met, or unconditionally once per second, with the ability to write tens of thousands of points per second. It supports triggering frequency at the 0.1 second level, and the field name written to influx should be correctly configured in the FFS column of Config.csv. The IP and file path configuration is shown in the following figure.

dbUpgradeRtTSSr.exe can update files that have not been uploaded in the past 7 days, scan every 12 hours, and automatically delete temporary files 10 days ago.

Deconfig.csv - 记事本	×
文件(E) 编辑(E) 格式(O) 查看(V) 帮助(H)	📕 dbUpgradeRtT5.ini - 记亊本 📃 🗆 🗙
[Monitor]	□ _ 文件(E) 编辑(E) 格式(Q) 查看(V) 帮助(H)
Auto=0	[TableNameTS1]
	Trigger=1000,3
[Database]	1=1000,1
Cucle=100	2=1000,3
DBPath=	3=1000,6
ADOConnectionA=Provider=MSDASQL.1;Password=123456;Persist Security Info=True;Us€	4=2000,2
IpA=	5=3000,5
TimeSeriesA=10.65.7.1	
ADOConnectionB=Provider=MSDASQL.1;Password=123456;Persist Security Info=True;Us@	[TableNameTS2]
IpB=	Trigger=2000,6
TimeSeriesB=	1=3000,1
ADOConnectionC=Provider=MSDASQL.1;Password=123456;Persist Security Info=True;Use	
IpC=	3=2000,6
TimeSeriesC=	
ModbusTcpServerIP=	

Figure 5.3 Configuration of InfluxDB IP and Collection Points in PDA

5.4 Automatic report

The automatic reporting system is a big data analysis and statistical tool.

Provide sufficient support for various reporting tools such as Microsoft Power BI and Fansoft through database and PDA underlying technology.

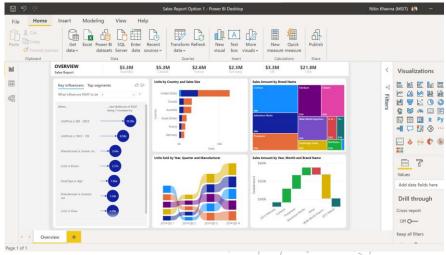


Figure 5.4 Power BI Report Example

Figure 5.5 Fansoft Report Example

		41277-0510					2080	canite							
and the second	× .	#//ST 045	# 8460	ettili	(ziet/s	- 142 - L	82318	Lada	E4FA	96536					
停产	100	88	143	383	生产	168	10	10	16	610	5				
		DAYGARMAN DS					PANES	SR.80-40							
C.0. 14850		Builds PLANE 107									-1				
Real Concession		Drustate encoding ratio													
CIVOI III		_			19100					-					
14.718 BO		P HANNE P HANNE				in V orms o								-	
62 C		essitered 2233-04-53 (8/3)		217		ATU (LINK)	112							40	
(R) (R)		922132928 2022 09-02 11:0 922134010 2022 09-02 12:0		28			121							-	
ATT D		9221524810 2022 09-22 123				CONSTRUCT STRUCT								1	
an 1		a uzziskina 2022-09-22 14:3		161		A111	· · · · · · · · · · · · · · · · · · ·							10	
				11		RYTE2 (100000)	102							45	
				- m 📃 🚺		HEREN MARKED	100							45	
				23		RAZI REF.	107							40	
		923254419 2022-09-23 2111				iterme anne	107							40	
	405	104021501 2022 09-24 00:5 104040146 2022 09-24 00:4				INE DATE STATE								40	
·	405	\$24102728 2522-09-04.0501	12 2021 - MINIZA		- Mexillocott	Commented in the second									
		934125934 2022-09-24 10:0													
		934153359 2022-09-24-14-1													
	1000	924212760 2022-09-24 2111 924234045 2022-09-24 220		077	027										
		925012414 2022 09 24 23 4													
		925085014 2022 09 28 07 3													
		905214755 2022-09-25 2009	09 2021	RINKUTINE		Auson I			104 <u>8</u>						
		925233734 2022 09-25 22 0		打开		88 2		1416/56 10	20064		30.	3 /1485	32	.2 Just	
		9291702407 2022-09-28 08:58 9291722-048 2022-09-29 10:59		10	string)	10.70		artes A	000	10		en 6.4		abine it	
		929122648 2022-09-28 10:00 927034852 2022-09-07 01:20													
		1002156915 2022-10-02 11:3		1/8f 8	8.9 (18)	246	次 4	.37 /Just	14.3	小时	10.	6 /1189	16.	95小时	
		1002220916 202210-021900		1798044		Erseine			email:nen/i			*****	14:Sec		
		10030641834 2022-10-03 02:58													
		1001114734 2022-10-03.09/2	os 2025	4.1 %		32.8	.	22	3.52 ⊤			24.1	0_		
			ు	4.1%	`	32.0	> %	_ 23	5.3 2 T	/H	4	24.1	0	/H	
						wieg.							wa		
			100												
			258												
			1 (0.10) (1												
			- 496100.tur												
			100												
			a												
			1210 10	126 94.08 94.8	1 1531 2631	UX 80. 85.26	E-80 E-34	0151 (0.0)	1 CO 95	1230 H.G	H.B.	15.02 (5.11	16.62 8	6.00 (7.00)	17.11

Figure 5.6 Real time and statistical reports for Grafana configuration

6 DCC - Digital Coil Conversion and full process quality management

6.1 Application of digital steel coil

The Digital steel coil conversion system is an important component of the hot and cold rolling information system and can also operate independently.

The so-called digital steel coil refers to a series of data sets that are attached to the physical steel coil with relevant production digital information. It realizes the "full process visualization" and "digitization" of the steel coil, providing a complete, accurate, and reliable data foundation for subsequent big data analysis and mining. It is the most crucial step in realizing an intelligent factory. It can be delivered with physical steel coils or stored in big data centers for 5G download, with the advantage of product traceability. Because there are millisecond and centimeter level numbers recorded on the steel coil, if applied to household appliances, construction, especially automotive, silicon steel, and stainless steel products, this will further ensure quality. Accelerate the construction of a manufacturing powerhouse, accelerate the development of advanced manufacturing industries, and promote the deep integration of the Internet, big data, artificial intelligence, and the real economy. "Digital steel coil" is a typical case of cross-border integration between manufacturing and big data.

(1) Digital steel coils are divided into length digital steel coils, timing digital steel coils, equipment digital steel coils, and equipment diagnostic digital steel coils, each with corresponding purposes.

(2) According to timeliness, it can be divided into real-time digital steel coils (calculated in seconds) and online digital steel coils (calculated in minutes).

(3) According to production processes, it can be divided into hot-rolled digital steel coils, cold-rolled digital steel plates, digital steel pipes, etc.

(4) Regardless of rough rolling, finishing rolling, or coiling, each signal is equally divided into 30000 parts according to length, truly accurate to the centimeter level, while achieving natural length alignment.

(5) Search for 20 year old steel coils based on certain indicators such as head, middle, and tail (which can be divided into 20 sections) and total length. The results will be returned within 10 seconds, without the need for hours. Generally, it takes only 3 seconds.

(6) Compared with other digital steel coils at home and abroad, the concept of this system is the most distinctive. It is truly accurate to the centimeter level and millisecond level, and the core of the analysis tool is consistent with the PDA system, making it very suitable for processing large amounts of data.

(7) Digital steel coil is a relatively independent system that can operate independently or as a part of the information system of factories, companies, and groups. It provides various fully open interfaces such as file sharing, database, FTP, HTTP, MQTT, etc. for other systems.

✓ The synchronous delivery of digital steel coils and physical steel coils is beneficial for downstream process control of product quality. For example, high-end cold rolled steel plates are mainly used for automotive outer panels, with high quality requirements and high processing difficulty. When delivering the steel coils to customers, the data attached to the physical products is also submitted together. This type of "digital steel coil" not only contains common data of the same batch of steel, but also carries the material, process, and Personalized data such as performance is equivalent to comprehensively collecting the "process fingerprint" of the steel coil, thereby helping automobile manufacturers better control the quality of the entire vehicle.

✓ Quickly identify quality statistical indicators through classification to guide decision-making.

 \checkmark Improving yield: width control, analyzing the control accuracy that physical steel coils can achieve, reducing the width margin by 1mm, will generate considerable economic benefits: for example, the width

margin of a certain specification, statistical analysis of all similar steel coils in history, and finding the optimal value when setting the model and control strategy unchanged.

 \checkmark Improving quality: such as controlling flatness, analyzing the reasons for each meter, changing control methods, controlling convexity, thickness, temperature, etc.

- ✓ Improve control level: set values, accurately track steel coil numbers.
- ✓ Improved model: able to easily identify commonalities, optimize models and parameters.

 \checkmark Quality objection handling: The digital steel coil records all quality data at the centimeter level, which can be quickly analyzed and processed without having to go to the user's site, shortening the time frame and reducing costs.

 \checkmark The existing data related to steel coils is dispersed in various systems, and the names of the data are not unified, which brings great difficulties to the comprehensive application of these data. "Digital steel coils" will establish a unified data platform, on which a series of information such as equipment data, operation records, energy consumption data, defect data, process data, cost data, and user information will be integrated into a unified data. The collected data is uniformly encoded according to the steel coil number, using the steel coil as the carrier, and assigned values in both chronological and length dimensions to produce a "digital steel coil" that is synchronized with the actual steel coil, providing a data foundation for in-depth applications such as equipment intelligent monitoring, production intelligent scheduling, cost management, and intelligent spot checks.

✓ With the increasing demand for product quality from users, those with stable product quality and high performance indicators will be the first to promote digital steel coil delivery nationwide. With the widespread implementation of information technology, it can be foreseen that physical steel coils that provide digital steel coils will be more popular. Leaving the forefront of information technology will win market advantages, not only providing convenience for users to improve product quality but also reducing costs, Moreover, it greatly promotes the continuous improvement of product quality momentum upstream, not only being traceable, but also providing full process data for analysis throughout the entire industry chain.

✓ Provide data sources for B/S and big data analysis.

6.2 Digital coil conversion calculation

The conversion work and length calculation are calculated by QDRServer based on the temporal data file. Support two tracking methods: zone occupancy and continuous calculation. By collecting and merging the individual quality data record files formed by each process, the entire process quality data files can be obtained, providing data sources for B/S and big data systems.

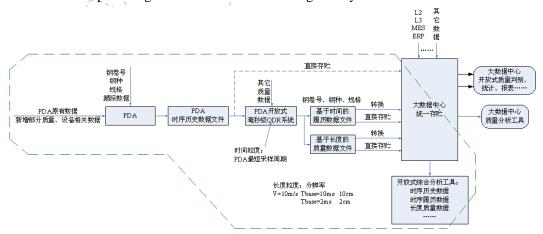


Figure 6.1 Process quality data calculation

- \checkmark Data recording based on coil number and length
- ✓ Millisecond time resolution
- ✓ Centimeter size of length
- ✓ Whole process data integration
- ✓ Efficient quality analysis tool product Explorer
- ✓ Rich analysis function

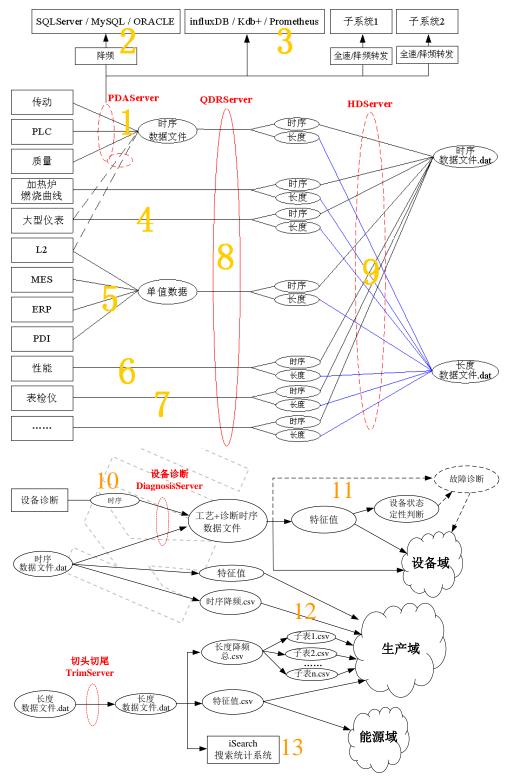


Figure 6.2 Digital Steel Coil System Architecture

🏘 QDRServer - PDA Quality data record			
File QDR Config Analysis Help			
🔯 📰 🛎 🏈 🥥			
P:\temp\8273\q 8271\190729\wisco703_9212259503.ds	2020-01-11 13:20:46.703 QDR 3001	Logical.j= 854 Port= 6 Tag= 7 CH= 22 At= 6 DotNum=96000 act passnumber	-
P: temp\8273\q 8271\190729\wisco704_9212259603.da	2020-01-11 13:20:46.703 QDR 3001	Logical.j= 854 Port= 0 Tag= 1 CH= 32 At= 197 DotNum=96000 R2 exit RT speed	
P:\temp\8273\q 8271\190729\wisco705.dat	2020-01-11 13:20:46.718 QDR 1902	Port= -1 Tag=33 CH= 854 rawAt=2979 DotNum=96000 R2T Ie act-4	
P:\temp\8273\q 8271\190729\wisco706_9212259703.ds	2020-01-11 13:20:46.734 QDR 1905	QDRAt=2980	
P:\temp\8273\q 8271\190729\wisco707_9212259803.da	2020-01-11 13:20:46.734 QDR 1906	LenQDRAt=2981	
P: temp182731q 827111907291wisco708_9212259903.de	2020-01-11 13:20:46.750 QDR 1907	jPort= -1 jTag=33 jCH= 14 jAt= 251 DotNum=96000 R2 loaded & active-4	
	2020-01-11 13:20:46.750 QDR 1908	vPort= 0 vTag= 1 vCH= 18 vAt= 238 DotNum=96000 SPEED R2	
۲ () () () () () () () () () (2020-01-11 13:20:46.765 QDR 1909	LenAt_TimeBase= 254	
	2020-01-11 13:20:46.765 QDR 1910	LenAt_LenBase= 255	
P:\temp\8273\q 8271\190729\wisco613_9212252603.d 🔺	2020-01-11 13:20:46.781 0DR 3001	Logical is 855 Ports 23 Tag=24 CH= 12 At=2969 DotNum=96000 B2T Te act	
P:\temp\8273\q 8271\190729\wisco614_9212252703.d P:\temp\8273\q 8271\190729\wisco615_9212252803.d	2020-01-11 13:20:46.781 QDR 3001 2020-01-11 13:20:46.796 QDR 3001		
P:\temp\8273\g 8271\190729\wisco616_9212252803.d P:\temp\8273\g 8271\190729\wisco616_9212252902.d	2020-01-11 13:20:46.796 QDR 3001	Logical.j= 855 Port= 6 Tag= 7 CH= 22 At= 6 DotNum=96000 act passnumber Logical.j= 855 Port= 0 Tag= 1 CH= 32 At= 197 DotNum=96000 R2 exit RT speed	
P:\temp\8273\g 8271\190729\wisco617_9212253002.d	2020-01-11 13:20:46.812 ODR 1902	Port= 0 lag=1 cH= 32 AC=19 Docume=56000 K2 exit ki speed	
P:\temp\8273\g 8271\190729\wisco618 9212253102.d	2020-01-11 13:20:46.812 QDR 1902	PDIL1 14g-33 CH- 635 1494C-2562 DOCWUM-56000 K21 19 42C-5 ODBAt=2983	
P:\temp\8273\g 8271\190729\wisco619 9212253202.d	2020-01-11 13:20:46.812 QDR 1905	00 RAt = 2984	
P:\temp\8273\g 8271\190729\wisco620.dat	2020-01-11 13:20:46.828 QDR 1908	iPort= -1 iTag=33 iCH= 15 iAt= 256 DotNum=96000 R2 loaded & active-5	
	2020-01-11 13:20:46.843 0DR 1908	$y_{POTC} = 0$ yTag=1 vCH= 18 vAt= 236 DotNum=56000 k2 roaded a active=5	
	2020-01-11 13:20:46.843 QDR 1909	Lenkt TimeBase= 259	
92122528,2019-07-29 00:04:58.280	2020-01-11 13:20:46.859 ODR 1910	Lenkt LenBase= 260	
92122529,2019-07-29 00:07:29.450	2020-01-11 13.20.46.889 QDR 1910	Perior Periorse - 500	
92122530,2019-07-29 00:09:40.510	2020-01-11 13:20:46.875 QDR 3001	Logical.j= 856 Port= 23 Tag=24 CH= 12 At=2969 DotNum=96000 R2T Ie act	
92122531,2019-07-29 00:11:54.720	2020-01-11 13:20:46.875 ODR 3001	Logical 1= 856 Port= 6 Tag= 7 CH= 12 At= 6 Dothum=96000 act passnumber	
92122532,2019-07-29 00:14:23.520	2020-01-11 13:20:46.921 0DR 3001	Logical. = 856 Port= 0 Tag= 1 CH= 32 At= 197 DotNum=96000 RC passhamper	
92122533,2019-07-29 00:17:03.130	2020-01-11 13:20:46.937 QDR 1902	Ports - 1 Tag=33 CH= 856 rawh=2985 Dothum=96000 RZ Ie act-6	
	2020-01-11 13:20:46.937 ODR 1905	DDRAt=2986	
	2020-01-11 13:20:46.953 0DR 1906	LenOD RAt=2987	
	2020-01-11 13:20:46.953 ODR 1907	Port= -1 jTag=33 jCH= 16 jAt= 261 DotNum=96000 R2 loaded 4 active=6	
92122530,2019-07-29 00:13:45.140	2020-01-11 13:20:46.953 QDR 1908	vPort= 0 vTag= 1 vCH= 18 vAt= 238 DotNum=96000 SPEED R2	
92122529,2019-07-29 00:11:36.660	2020-01-11 13:20:46.968 QDR 1909	LenAt TimeBase= 264	
92122528,2019-07-29 00:08:39.430	2020-01-11 13:20:46.968 0DR 1910	LenAt LenBase= 265	
92122527,2019-07-29 00:06:25.080			
92122526,2019-07-29 00:04:23.130	2020-01-11 13:20:46.984 ODR 3001	Logical.j= 857 Port= 23 Tag=24 CH= 12 At=2969 DotNum=96000 R2T Ie act	
92122525,2019-07-29 00:02:20.570	2020-01-11 13:20:46.984 ODR 3001	Logical 1 = 857 Port = 6 Tag 7 CH= 22 At = 6 DotNum=96000 act passnumber	
	2020-01-11 13:20:46.984 QDR 3001	Logical.j= 857 Port= 0 Tag= 1 CH= 32 At= 197 DotNum=96000 R2 exit RT speed	
	2020-01-11 13:20:47.000 QDR 1902	Port= -1 Tag=33 CH= 857 rawAt=2988 DotNum=96000 R2T Ie act-7	
	2020-01-11 13:20:47.000 0DR 1905	0DRAt=2989	
92122527	2020-01-11 13:20:47.000 QDR 1906	LenQD RAt=2990	
92122528	2020-01-11 13:20:47.015 QDR 1907	'Port= -1 'Tag=33 'CH= 17 'At= 266 DotNum=96000 R2 loaded & active=7	
92122529	2020-01-11 13:20:47.031 QDR 1908	vPort= 0 vTag= 1 vCH= 18 vAt= 238 DotNum=96000 SPEED R2	
92122530	2020-01-11 13:20:47.031 QDR 1909	LenAt TimeBase= 269	
92122531	2020-01-11 13:20:47.031 QDR 1910	LenAt_LenBase= 270	
			_
Z			_
	•		1

Figure 6.3 Converting and caclulating of quality data recording files

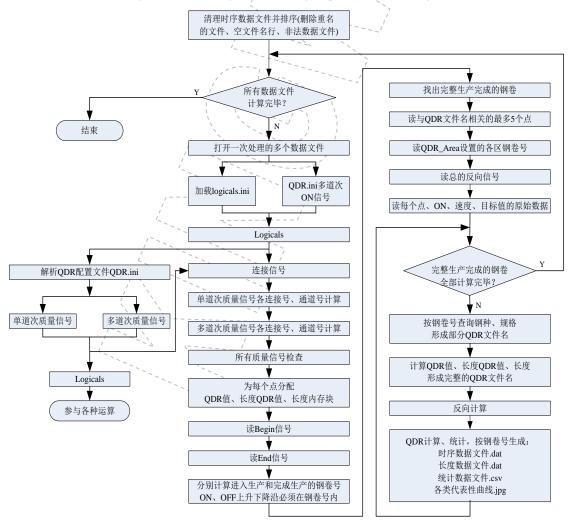


Figure 6.4 Quality data converting flow chart

e <u>E</u> dit <u>V</u> iew <u>T</u> ools <u>H</u> elp					
Drganize ▼ Share with ▼ Burn	New folder			8= - -	(7
 A Pavorites ■ Desktop Downloads M Recent Places 	Name Mame Mutited2.pda Mutited3.pda Mutited4.pda I.pda	Date modified 2014/2/27 15:54 2014/2/27 16:46 2012/6/13 17:14 2007/11/13 0:46	Type PDA Analysis File PDA Analysis File PDA Analysis File PDA Analysis File	Size 458 KB 458 KB 327 KB 342 KB	
⊯ Libraries ⊡ Documents Music ⊡ Pictures Videos	20070831_211737 Test 68.dat 20070831_212737 Test 68.dat 20106092208_02358_5.75_1500_3637240[20070831_231605].dat 201106092210_02358_5.75_1500_3702780[20070831_231813].dat 201106092212_02358_5.75_1500_3768320[20070831_232022].dat 201106092214_02358_5.75_1500_3768320[20070831_23202].dat	2007/8/31 21:27 2007/8/31 21:32 2007/8/31 23:18 2007/8/31 23:20 2007/8/31 23:22 2007/8/31 23:24	PDA data File PDA data File PDA data File PDA data File PDA data File PDA data File	99,857 KB 48,041 KB 10,713 KB 10,714 KB 10,713 KB	
 Computer System (C:) MyDoc (D:) Datasheet (E:) 	201106092216 02358 5.75 1500 3899390120070831 2324381.dat 2 dat dat 2 dat dat 3 One data file per steel coil dat 2 dat dat	2007/8/31 23:26 2007/8/31 23:28 2007/8/31 23:31 2007/8/31 23:33	PDA data File PDA data File PDA data File PDA data File	10,713 KB 10,713 KB 10,713 KB 10,714 KB 10,714 KB	
Project (F:) Removable Disk (H:) Soft (I:)	dat ♀ 20106092226_Q2358_5.75_1500_4227070[20070631_23318].dat ♀ 201106092228_Q2358_5.75_1500_4292600[20070631_233726].dat ♀ 201106092230_Q2358_5.75_1500_4358140[20070631_233934].dat	2007/8/31 23:35 2007/8/31 23:37 2007/8/31 23:39 2007/8/31 23:41	PDA data File PDA data File PDA data File PDA data File	10,714 KB 10,714 KB 10,714 KB 10,714 KB	
; 新加卷 ();) ; Temp (K:) ♀ Network	☆ 201106092232_Q235B 5.75_1500_4423670[20070831_234143].dat ☆ 2010609224_Q235B 5.75_1500_4489220[20070831_234351].dat ☆ Untitledi.dat ∰ Lidmic	2007/8/31 23:43 2007/8/31 23:46 2007/6/11 13:19 2007/11/12 22:18	PDA data File PDA data File PDA data File PDA DigitalMeter	10,714 KB 10,714 KB 5,979 KB 1 KB	
	₩ 2.dmc ₩ 701.dmc	2007/11/12 22:18 2007/11/12 22:19 2007/11/12 23:03	PDA DigitalMeter PDA DigitalMeter PDA DigitalMeter	1 KB 2 KB	

Figure 6.5 The quality data recording files generated

6.3 Length timing equipment and equipment diagnosis digital steel coil

The digital steel coil includes high-resolution data files of length, time-series high-frequency data files, equipment diagnosis ultra-high frequency data files and their header, body, tail, full-length feature value statistical data, and frequency reduction data of length and time series, as shown in the file list below.

	- 172.20.89.1 - DigitalCoil - 2022 - 2022-03-16 - [22] 搜索 2022-03-16			
织 🔻 🎱 打开 🥻	耀文件夹			III 🔻 🗖
▶ 收藏实	名称 🔺	修改日期	类型	大小
🚺 下载	22060912_SPCC-YT_3.82_1267_557_23089_890_570_20220316_024335 WISCO.HSM2.esv	2022/3/16 14:27	CSV 文件	7,183 KB
📃 桌面	22060912_SPCC-YT_3.82_1267_557_23089_890_570_20220316_024335 WISCO.HSM2.dat	2022/3/16 2:57	PDA data File	14,897 KB
雪库	22060912_SPCC-YT_3.82_1267_557_23089_890_570_20220316_024335 WISCO.HSM2. diagnosis.csv	2022/3/17 7:22	csv 文件	22,958 KB
1 年	\$22060912_SPCC-YT_3.82_1267_557_23089_890_570_20220316_024335 WISCO.HSM2.diagnosis.dat	2022/3/17 7:22	PDA data File	22,342 KB
▌ 计算机	22060912_SPCC-YT_3.82_1267_557_23089_890_570_20220316_024335 WISCO.HSM2.diagnosis.txt	2022/3/17 7:22	TXT 文件	568 KB
🂒 本地磁盘(C:)	22060912_SPCC-YT_3.82_1267_557_23089_890_570_20220316_024335 WISCO. HSM2. Len. csv	2022/3/16 2:59	CSV 文件	17,603 KB
□ 本地磁盘 (0:)	22060912_SPCC-YT_3.82_1267_557_23089_890_570_20220316_024335 WISCO.HSM2.Len.da	2022/3/16 2:56	DA 文件	21,048 KB
□ 新加巻 (E:) □ 大众软件 (F:)	\$22060912_SPCC-YT_3.82_1267_557_23089_890_570_20220316_024335 WISCO.HSM2.Len.dat	2022/3/16 2:58	PDA data File	21,584 KB
	22060912_SPCC-YT_3.82_1267_557_23089_890_570_20220316_024335 WISCO.HSM2.Len.txt	2022/3/16 2:59	TXT 文件	2,520 KB
- 网络	22060912_SPCC-YT_3.82_1267_557_23089_890_570_20220316_024335 WISCO.HSM2.txt	2022/3/16 14:27	TXT 文件	1,171 KB
	22060913_DC51D+Z_4.52_1267_527_23788_900_700_20220316_024526 WISCO.HSM2.csv	2022/3/16 14:27	CSV 文件	6,538 KB
	🎇 22060913_DC51D+Z_4, 52_1267_527_23788_900_700_20220316_024526_WISCO. HSM2. dat	2022/3/16 3:01	PDA data File	14,360 KB
	22060913_DC51D+Z_4.52_1267_527_23768_900_700_20220316_024526 WISCO.HSM2. diagnosis.csv	2022/3/17 7:24	CSV 文件	20,012 KB
	32060913_DC51D+Z_4.52_1267_527_23768_900_700_20220316_024526 WISCO.HSM2. diagnosis. dat	2022/3/17 7:24	PDA data File	20,891 KB
	22060913_DC51D+Z_4.52_1267_527_23788_900_700_20220316_024526_WISCO.HSM2.diagnosis.txt	2022/3/17 7:24	TXT 文件	582 KB
	22060913_DC51D+Z_4, 52_1267_527_23788_900_700_20220316_024526_WISCO. HSM2. Len. csv	2022/3/16 3:05	CSV 文件	16,662 KB
	22060913_DC51D+Z_4, 52_1267_527_23788_900_700_20220316_024526 WISCO. HSM2. Len. da	2022/3/16 3:02	DA 文件	20,602 KB
	🎇 22060913_DC51D+Z_4. 52_1267_527_23788_900_700_20220316_024526 WISCO. HSM2. Len. dat	2022/3/16 3:04	PDA data File	21,107 KB
	22060913_DC51D+Z_4.52_1267_527_23788_900_700_20220316_024526 WISCO.HSM2.Len.txt	2022/3/16 3:05	TXT 文件	2,520 KB
	22060913_DC51D+Z_4.52_1267_527_23788_900_700_20220316_024526 WISCO.HSM2.txt	2022/3/16 14:27	TXT 文件	1,171 KB
	22060914_DC01_4.82_1279_581_28094_900_700_20220316_024717 #ISCO. HSM2. csv	2022/3/16 14:27	csv 文件	7,395 KB
	\$\$\$ 22060914_DC01_4.82_1279_581_28094_900_700_20220316_024717 WISCO.HSM2. dat	2022/3/16 3:06	PDA data File	15,127 KB
	22060914_DC01_4.82_1279_581_28094_900_700_20220316_024717 WISCO. HSM2. di agnosis. csv	2022/3/17 7:25	CSV 文件	21,359 KB
	\$\$\$ 22060914_DC01_4.82_1279_581_28094_900_700_20220316_024717 WISCO.HSM2. diagnosis. dat	2022/3/17 7:25	PDA data File	21,988 KB
	22060914_DC01_4.82_1279_581_28094_900_700_20220316_024717 WISCO.HSM2. diagnosis.txt	2022/3/17 7:25	TXT 文件	584 KB
	22060914_DC01_4.82_1279_581_28094_900_700_20220316_024717 WISCO. HSM2. Len. csv	2022/3/16 3:08	CSV 文件	18,314 KB
	22060914_DC01_4.82_1279_581_28094_900_700_20220316_024717 WISCO.HSM2.Len. da	2022/3/16 3:05	DA 文件	21,221 NB
	\$\$\$22060914_DC01_4.82_1279_581_28094_900_700_20220316_024717 WISCO.HSM2. Len. dat	2022/3/16 3:07	PDA data File	21,764 KB
	22060914_DC01_4.82_1279_581_28094_900_700_20220316_024717 WISCO.HSM2. Len.txt	2022/3/16 3:08	TXT 文件	2,520 KB
	22060914_DC01_4.82_1279_581_28094_900_700_20220316_024717 WISCO.HSM2.txt	2022/3/16 14:27	TXT 文件	1,171 KB
	22060915_DC51D+Z_5.02_1267_566_28094_900_700_20220316_024902 WISCO. HSM2. csv	2022/3/16 14:27	CSV 文件	7,845 KB
	\$\$\$22060915_DC51D+Z_5.02_1267_566_28094_900_700_20220316_024902 WISCO.HSM2.dat	2022/3/16 3:04	PDA data File	15,675 KB
	│ □ □ 个项 修改日期: 2022/3/16 14:27 - 2 创耀日期: 2022/3/16 10:14 - 2 脱机状态: 脱机		x 60	

Figure 6.6 Digital steel coil file for length, timing, and equipment diagnosis

6.4 Alignment

Each signal in the length direction is divided into 30000 equal parts, and different process sections and production lines of the same production line are naturally aligned. It is also compatible with the entire process of hot rolling, cold rolling, and processing lines; The timing direction is aligned according to the sampling time, and the equipment diagnosis ultra-high frequency raw data is aligned according to the sampling time.

6.5 Real time digital steel coil

Within 1 second after throwing steel in each zone of rough rolling, finishing rolling, and coiling, the PDAServer of each zone starts the QDRServer digital steel-coil calculation. The QDRServer completes the calculation within 2 seconds, and completes the judgment of quality, equipment, model accuracy, etc. within 1 second, while also completing the curve display.

The startup signal in PDAServer is set in the configuration file Config.csv, and the unwinding signal of each coiler in the coiling area is an OR relationship.

Curve display: Display the real-time curves of 2 historical and current strip steels before steel throwing, and display the curves of 2 historical and current strip steels within 1 second after QDRServer calculation is completed.

Rough rolling: final pass curves such as outlet width, centerline deviation, and outlet temperature.

Precision rolling: thickness, width and deviation, FT0, FT7, flatness, convexity measurement and target values, etc.

Coiling: Coiling temperature, width and deviation, measured centerline, and target values. Template switching can be used for roll gap, rolling force, current, servo valve signal, etc.

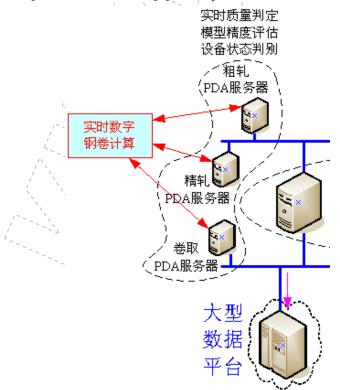


Figure 6.7 Real time digital steel coil system configuration

👫 ftp://172.20.90	. 116/		
🕤 🖓 ~ 🔽 • In:	ternet + 172.20.90.116 +	▼ 🔯 複素 172.20.9	0. 116
组织 ▼			••• 👻 🔞
 ☆ 收藏夹 ▶ 下载 ■ 桌面 2 最近访问的 2 库 ■ 图片 	 ▶ CTC_实时数字钢卷_质里 ▶ FM_列度测试曲线 ▶ FM_经合数字钢卷 ▶ R1_实时数字钢卷_质里 ▶ R2_实时数字钢卷_设备 ▶ 总数字钢卷 	 DC_综合数字钢卷 FM_实时数字钢卷_设备 FDA原始数据文件 R1_综合数字钢卷 R2_实时数字钢卷_质里 数字钢卷分析工具PDAClient.exe 	 ▶ FM_零调曲线 ▶ FM_实时数字钢卷_质量 ▶ R1_实时数字钢卷_设备 ▶ R2_刚度测试曲线 ▶ R2_综合数字钢卷

Figure 6.8 Directory structure of digital steel coil system for a certain project

6.6 Basic, Standard, Professional, and Enterprise Editions

Basic version: L1 data for rough rolling, finishing rolling, and coiling areas (length+timing) Standard version: Basic version+L2, L3, L4, large instrument data (length+timing) Professional Edition: Standard Edition+Search System Enterprise Edition: Professional Edition+Device Diagnosis (Timing)

6.7 High resolution real-time quality judgment and device status discrimination

The determination of length direction can be accurate to the centimeter level.

The timing direction determination can be precise to the millisecond level.

Immediately start the digital steel coil calculation in each area after throwing steel, and complete quality judgment, model accuracy evaluation, servo equipment status discrimination, etc. within 10 seconds.

6.8 Digital steel coil analysis tool BigOffice

Obtaining data from a data warehouse is a difficult task for anyone. Intuitively extracting raw data, efficiently displaying raw curves, conveniently selecting analysis methods, and quickly displaying analysis results are the last mile for industrial big data to enter the desktop of professional engineers. Otherwise, it is difficult to land, and massive data will be shelved.

In the era of big data, engineering and technical personnel urgently need a set of BigOffice.

PDA is a set of industrial millisecond level real-time big data tools and also the basic platform for big data collection.

PDA simplifies complex operations, efficiently performs a large amount of mathematical operations, and visualizes the presentation of data.

PDA provides high-speed data services for various architectures such as C/S and B/S.

PDA can also be naturally compatible with second or minute level data frequency. For example, for Tieqian big data, all data related to ironmaking, sintering, and coking can be extracted from the data warehouse by day, week, or month and saved in PDA format data files. Equipment and process engineers can analyze from their respective angles. PDA has conventional mathematical analysis methods, and big data specific analysis methods can be integrated into PDA in the form of plugins, In this way, users' diverse ideas can be incorporated into the PDA platform, and the ecosystem will gradually be established. PDA data and functions are completely open and transparent.

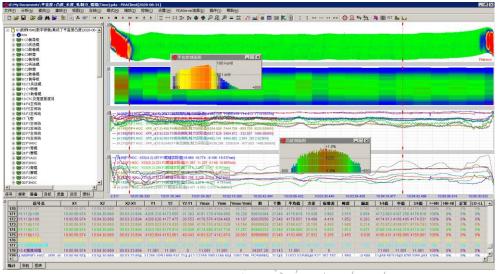


Figure 6.9 Curve of relationship between flatness and crown and rolling force and roll gap

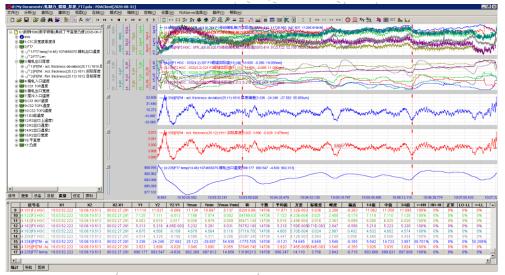


Figure 6.10 Relationship between rolling force roll gap and outlet thickness and FT7

Figure 6.11 The relationship curve between RM FM DC temperature and FM speed

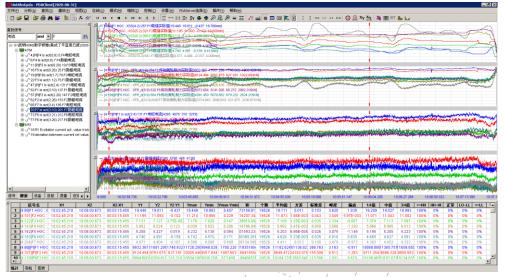


Figure 6.12 The relationship curve between rolling force gap and main transmission current

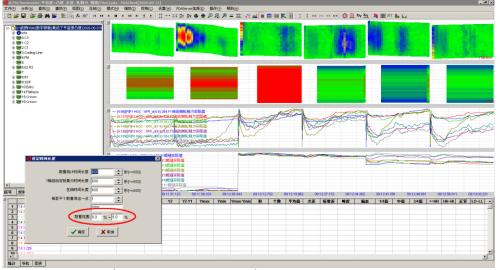


Figure 6.13 Shape and curve of 6 strip head

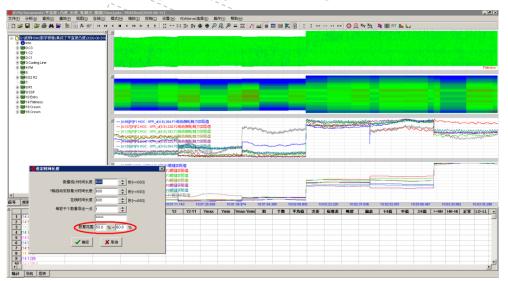


Figure 6.14 Shape and curve of 6 pieces of strip in the middle

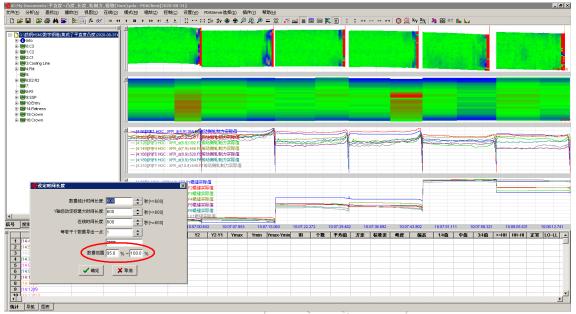


Figure 6.15 Shape and curve of 6 strip tail

6.9 Application of digital steel coil in quality inspection

Quality inspectors need to manually check all quality index curves of each steel coil. The calculation of product length, time translation, and length alignment for each index are almost manually completed, which is labor-intensive and tedious.

The digital steel coil iSearch high-speed search locates the steel coil, displays all quality curves according to the upper and lower limits of PDI indicators, displays the measured plate shape in three-dimensional graphics, and quickly switches quality inspection content using analysis templates.

Figure 6.16 PDI Indicator Upper and Lower Limits Showing All Quality Curves

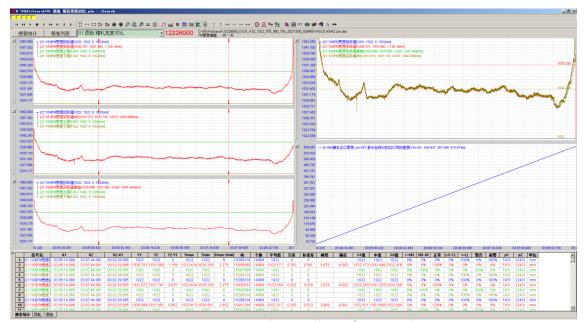


Figure 6.17 Analysis Template Quick Switching Quality Inspection Content

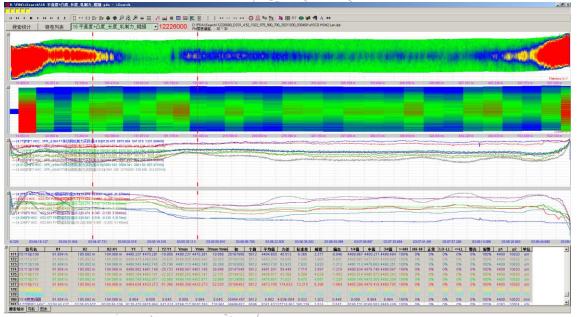


Figure 6.18 3D Graphic Display of Measured Plate Shape

6.10 Digital steel plate

There are traditional wide and thick plate rolling mills and hot continuous rolling+heat treatment production methods for wide and thick plates, with higher requirements for flatness and convexity. PDA supports 5000 plate shape measurement curves horizontally, as shown in the above figure, which can be locally enlarged.

The complete set of equipment for the medium and thick plate production line mainly includes: vertical roller rolling mill, four roller rolling mill, straightening machine, fixed length shear, double-sided shear and splitting shear, fast cooling speed device, etc. The basic production process is as follows: continuous casting billet \rightarrow feeding \rightarrow heating furnace \rightarrow descaling \rightarrow (rough rolling) \rightarrow precision rolling (controlled rolling) \rightarrow (rapid cooling) \rightarrow hot straightening \rightarrow cooling bed \rightarrow inspection and grinding \rightarrow cutting head, tail, sample, length and edge \rightarrow surface inspection and cleaning \rightarrow marking \rightarrow collection \rightarrow warehousing \rightarrow shipment.

Figure 6.19 Wide and Thick Plate Production Line and Finished Products

6.11 Digital steel pipe

The production process of hot-rolled seamless steel pipes includes basic processes such as pre rolling preparation of billets, heating of billets, piercing, rolling, sizing and reducing, cooling of steel pipes, cutting heads and tails of steel pipes, sectioning, straightening, flaw detection, manual inspection, spray printing, bundling and packaging.

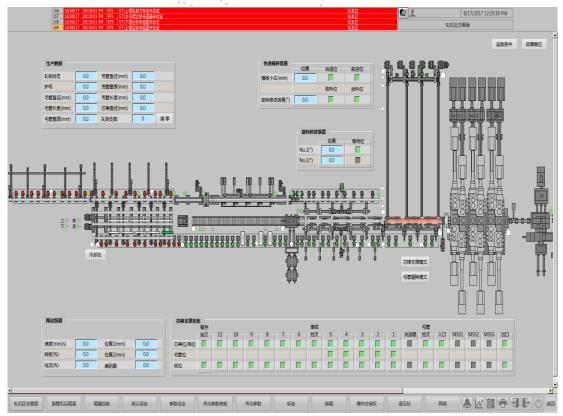


Figure 6.20 Steel Pipe Production Process

6.12 Continuous casting digital slab

Divide the slab according to the cutting signal of the flame cutting machine, the length direction can be precise to the centimeter millimeter level, and can be aligned with the length of HSM and CSM digital steel coils.

Figure 6.21 Continuous Casting Production Process Flow Chart

6.13 Cold strip mill digital steel coil

Support the function of dividing a steel coil into multiple small coils.

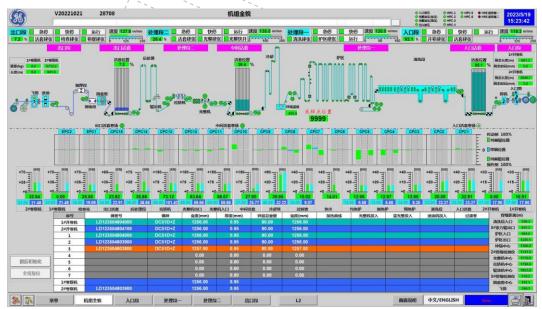
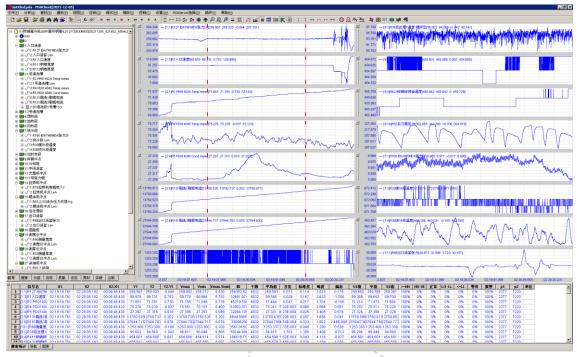




Figure 6.22 Cold Rolling Production Flow Chart

🗁 C:\Documents and Settings\Administrator\桌ī	面∖最终钢卷		
文件(E) 编辑(E) 查看(V) 收藏(A) 工具(I)	帮助(日)		
🕙 后退 🔹 🌖 🔹 🤔 🔎 搜索 🌔 文件夹 🛛 😭	s 🎯 🗙 🗐 🏢•		
地址(D) 🗀 C:\Documents and Settings\Administrator\易	[面]最终钢卷		▶ 转到
LD121C00306201[20211205_002237_553m].Len.dat	MLD121C00306803[20211205_021852_550m].Len.dat	MLD121C00400203[20211205_041256_593m].Len.dat	
MLD121C00306202[20211205_002237_532m].Len.dat	MLD121C00306901[20211205_023731_587m].Len.dat	ALD121C00400301[20211205_043335_572m].Len.dat	
MLD121C00306203[20211205_002237_514m].Len.dat	MLD121C00306902[20211205_023731_562m].Len.dat	MLD121C00400302[20211205_043335_569m].Len.dat	
MLD121C00306302[20211205_004428_476m].Len.dat	MLD121C00306903[20211205_023731_557m].Len.dat	ALD121C00400401[20211205_045128_580m].Len.dat	
MLD121C00306303[20211205_004428_559m].Len.dat	MLD121C00307001[20211205_025621_572m].Len.dat	MLD121C00400402[20211205_045128_571m].Len.dat	
MLD121C00306401[20211205_010356_590m].Len.dat	MLD121C00307002[20211205_025621_568m].Len.dat	MLD121C00400403[20211205_045128_554m].Len.dat	
MLD121C00306402[20211205_010356_583m].Len.dat	MLD121C00307003[20211205_025621_566m].Len.dat	MLD121C00400501[20211205_050918_616m].Len.dat	
MLD121C00306403[20211205_010356_539m].Len.dat	MLD121C00307101[20211205_031500_577m].Len.dat	MLD121C00400502[20211205_050918_608m].Len.dat	
MLD121C00306502[20211205_012242_532m].Len.dat	MLD121C00307102[20211205_031500_582m].Len.dat	MLD121C00400503[20211205_050918_480m].Len.dat	
MLD121C00306503[20211205_012242_544m].Len.dat	MLD121C00307103[20211205_031500_549m].Len.dat	MLD121C00400601[20211205_052658_569m].Len.dat	
MLD121C00306601[20211205_014127_587m].Len.dat	MLD121C00307202[20211205_033353_569m].Len.dat	MLD121C00400602[20211205_052658_563m].Len.dat	
MLD121C00306602[20211205_014127_562m].Len.dat	MLD121C00307203[20211205_033353_563m].Len.dat	MLD121C00400603[20211205_052658_579m].Len.dat	
MLD121C00306701[20211205_020007_590m].Len.dat	MLD121C00400101[20211205_035226_579m].Len.dat	MLD121C00400801[20211205_060257_603m].Len.dat	
MLD121C00306702[20211205_020007_583m].Len.dat	MLD121C00400102[20211205_035226_567m].Len.dat	MLD121C00400802[20211205_060257_585m].Len.dat	
MLD121C00306703[20211205_020007_535m].Len.dat	MLD121C00400103[20211205_035226_613m].Len.dat		
MLD121C00306801[20211205_021852_577m].Len.dat	MLD121C00400201[20211205_041256_619m].Len.dat		
KLD121C00306802[20211205_021852_582m].Len.dat	MLD121C00400202[20211205_041256_608m].Len.dat		
」 51 个对象		85.6 MB 🛛 💐 我的电脑	
		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

Figure 6.24 List of Finished Digital Steel Coils

7 CFS - Coil Fast Search and statistics system

Google, Baidu, and Taobao are civil big data searches, with most of their data being triggered event based. iSearch is an industrial big data search, with similarities and significant differences. The latter is mainly high-frequency temporal and high-density conversion based.

Digital steel coils are vast amounts of data on the millisecond and centimeter scales. If traditional databases are used to search and count certain indicators among tens of millions of steel coils, the calculation time will be on the hour scale, which is difficult to accept in practical work.

The search and statistics speed of CFS (Coil Fast Search system) is hundreds of times faster than traditional databases, achieving the ability to search for 10000 steel pieces that meet the requirements in tens of millions of steel coils in seconds, and calculate certain indicators of these 10000 steel pieces, return extraction data and statistical results. For example, the search and statistics of all steel coils in 20 years are performed once, and the results are returned in 3 seconds. The configuration file iSearch Searchini. Simultaneously supporting control networks, office networks, wide area networks, etc.

The search statistics results can be saved to local or remote files, databases, or received through MQTT. It supports file sharing, direct opening, FTP, and HTTP downloading, and provides download services for raw high-frequency data.

7.1 Changes in working methods

The traditional method is to save a certain statistical calculation result every day and summarize it when needed. If you want to modify a certain statistical accuracy range, you need to organize and calculate all the historical data once. The workload is huge and time-consuming, and some of the original data may have been lost. iSearch performs statistical calculations on the original high-frequency data every time, and the accuracy range can vary according to needs.

7.2 Changes in work platforms

Transforming from fixed and explicit computing to distributed high-speed computing primarily focused on search, the number of floating-point operations per second can reach tens or even hundreds of billions.

7.3 Changes in data frequency granularity

Transforming from event triggered, second or meter level data accuracy to millisecond or centimeter level data accuracy.

7.4 System structure

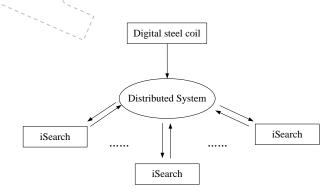


Figure 7.1 CFS Signal Flow Chart

7.5 Implementation scheme

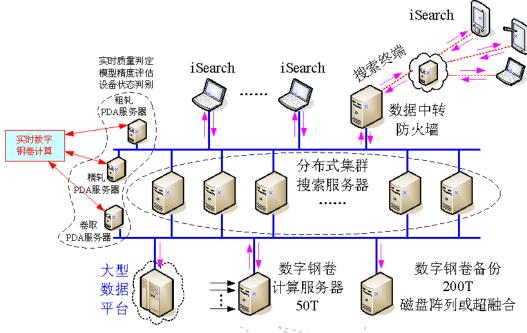


Figure 7.2 Schematic diagram of CFS system structure

The iSearch supports B/S and C/S architectures.

7.6 Slice Indicator Search Statistics

The search range and statistical output value of the steel coil can be selected according to the following figure, and each steel can be divided into a maximum of 21 slices.

						/	· · · ·		× .			./							
詞卷	搜索统计系统											/							
		a 0													~ ~	D. I			<u> </u>
נ 🖻	ê 🔲 🎬 🦉 .	f* 🏦		14 44	< II	- + +	· • •	<u>k</u>	II •	• 📰 Ily Ily	· 🏶 🏶 ۶	P 👷 🗩	= <u>m</u>	₩ ш ₩		U I I	ж ≫ •	-э к-я 🍪) 🙆 X
搜	索统计 爭	卷列	売	01厚	官					•	1	PI]TM - act.	thickness c	leviation, ,-3	10 ~ 30				
3.54.				· ·					LL T										
	捜索识别号	统计 卷数	正常 巻数	扫描	片	最大值	最小值	极差	노	限间的 均值	值 方差	标准法	き 百分!	北 峰値	偏态	1/4值	中值	3/4值	上升
2	0221119_122652687		149	149	1	3357.03	E-1705.33					2 133.143	32.105	6.846	0.842	108.001	15.776	0.832	1.18
			l I		2	141.476	-129.153	270.630	-0.377	0.823	309.276	17.143	92.852	6.218	0.542	1.029	-4.022	-0.057	8.01
ľ					3	122.460	-392.498	514.958	8.326	41.69	2 606.240	21.485	28.738		·1.390	40.409	39.116	48.126	0.58
					Whole		t-1705.33				792.776	25.744	91.603		3.568	0.214	-4.022	1.021	9.78
il 2	0221119_122652687	70	149	149	1	3357.03	8-1705.33	5062.37	10 706	54.00	7 35062.88	2 133 143	32 105	6 846	0.842	108.001	15 776	0.832	1 18
			L		1 制卷	捜索统计	†系统												
	✓ 搜索绩	iit(X)			捜索钢	卷:		目标值	i I	捜索区段:			序列:				捜索	输出:	
	特殊教	性识别	(Y)		□ 钢科	Þ				统计方式一			İ序		☑ 长度		□ 暃	大值	
	主题数	抱下载	(<u>Z</u>)		普通	副冷轧料	-			 百分比 	○ 长度	- 17	合格统计	ŀ:			 	小店	
					DC	01	-	- 包含		切片数量: 3	▼ 5 ±				m 126		口根		
		<u> </u>			□ 钢着					, 切片1: [1	<u> </u>	_		+					
			\mathbf{N}		□ 出炉		ł		-	切片2:	<u> </u>			1 1			미크	下限间的平	·均值
						7盧皮 し入口温月	~			切片3:1	~ %				V.		₽ ₹	均值	
			`	 I 		山大口温度			-1	切片4.	^			-	10		豆方	ī差	
				M		山口温泉				切片5:	- %			15	110		E #	補差	
						「山口風」			-1	切片6:	^^	被索	信号:(本	di ViSearci	h\Search.in	i 中配畳)			
				- 1		し ヘロ温度			-1	切片7:			度识别号:				区百		
			•		□ 宿判			3.6 3	.8	切片8:	- %	~	通道:		-		[嶋	値	
								3.6 3	.8	切片3:							一口便	态	
					□ 宽度		ļ	1250	_	切片 5.	- %				thickness de	viation		が古	
					□ 平直				_	切片10.			备注:	精轧厚度偏	差		-		
					□ 凸度		ļ		_	切片12:				-888		ī	- 🗆 🕈		
					□ 凸腺		ļ			切片12:	- %	抽志	指标:				🗖 3.	/4值	
					□ 楔形		ļ		_			15.3		e el	_			升沿计数	
					□ 卷取		ļ			切片14:	16		上限:		- IT 按PDI				
					□ 炉号	}		1 💌		切片15:	%		下限:	-30			1	È选 全:	不选
					□ 卷取	初号		1 💌		切片16:	%								
					□ 换辑	后第	[1 • 块		切片17:	*								
					□ 換載	格后第		1 🗍 烘		切片18:	%								
					マ日期			_	_	切片19:	%		办公网	- P	4QTT 搜索	✓ 1	索	🗙 退出	
						17日日	1	2022-11	_	切片20:	%		,						_
								2022-12		切片21:	%								

Figure 7.3 iSearch Search Interface

+ /+> /		-					7		IPIITM -	act thick	ness deviation,	-30 ~ 30														
素统计] 🕴	网卷列表	01厚度				•																			
IP	Disk	钢卷号	生产日期	钢种	厚度 宽	度 长度	重量	FDT	CT DC	平均值 1	方差 标准法	百分比	平均值 2	方差 标	を差 百: 2	分比 平均 2 3	值 方言	E 标准差 3	百分比	平均值	方差	标准差 百分	北上限	下限	Т	
72.20.89.6	1	22237898	2022-11-05 00:56:49	0.3558	5.73 18	300 362	29856	0	600 2 3	38.534 1	03261.5321.34			151.256 12.					0	-0.497	1214.901	34.855 95.387	7 30	-30		
72.20.89.6	1	22237889	2022-11-05 00:59:13	0,3558	5.73 18	300 363	29856	0	600 1 1	23.232 1	5632.52125.03	0 19.333	0.643	202.451 14	229 96.	391 70.7	4 487.5	77 22.081	0.333	2.570	555.349	23.566 94.66	30	-30		
72.20.89.6	1	22237890	2022-11-05 01:01:36	Q3558	5.73 18	300 362	29856	0	600 2 5	5.568 8	982.26594.775	59.667	0.305	180.714 13.	443 95.	211 29.3	8 139.8	73 11.827	72	1.149	306.604	17.510 94.62	3 30	-30		
72.20.89.6	1	22237891	2022-11-05 01:04:03	Q3558	5.73 18	300 362	29856	0	600 1 4	3.142 1	3535.81116.34	4 9	0.636	182.463 13.	508 96.	058 43.3	2 222.9	72 14.932	0	1.489	352.004	18.762 94.223	7 30	-30		
72.20.89.6	1	22237892	2022-11-05 01:06:51	03558	5.73 18	300 363	29856	0	600 2 1	35.749 1	8843.51137.27	2 18.667	0.911	142.080 11.	920 98.	167 51.5	3 140.8	53 11.868	0	2.766	533.090	23.089 96.39	3 30	-30		
72.20.89.6	1	22237893	2022-11-05 01:09:18	Q3558	5.73 18	300 363	29856	0	600 1 6	1.074 1	1545.9(107.45)	2 59.333	0.103	159.523 12	630 97.	279 31.6	3 207.9	38 14.420	41.333	1.029	320.143	17.893 96.34	30	-30		
72.20.89.6	1	22237894	2022-11-05 01:11:42	03558	5.73 18	300 364	29856	0	600 2 7	9.500 1	9293.20138.90	0 68	0.637	124.579 11.	161 98.	684 47.5	9 179.4	27 13.395	0	1.895	399.470	19.987 97.39	30	-30		
72.20.89.6	1	22237895	2022-11-05-01-14-08	0.3658	5.73 15	10 363	29856	0	600 1 5	4 1132 2	5614 97161 04	7 14	0.263	196.401.14	014 95	738 58 2	4 455 4	51 21 341	n	1 390	514 422	22 681 93 96	3 31	.30	1	
72.20.89.6	1	222 202	21120_074315406	®pda (localh	ost_3306) -	表																				
72.20.89.6	1	222 文件(F) 缤缀(E) 査者(V) 1	新口(w) 報助	I(H)																					
72.20.89.6	1	224										1														
72.20.89.6	1	224 📑 🐺	入向导 🔽 导出向导	》 筛选肉早	隊 ⊞ 門排	8查看 🛛	表单	著	🗋 备注 🗄	田 十六i	井制 💴 国像	□ 2 2 2 3 2 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3	序排序	2, 降序排	芋 🏠	解除排序	14 自定	又排序								
72.20.89.6	1	222 IP	Disk Colf	d Product	EDT	SteelGr	Thickne	Width	Lenat Weigh	FDT CT	DC Average1	Variance1	StdDev1	Percent1 A	verage2	Variance2	StdDev2	Percent2 A	verage31	Variance3	StdDev3	Percent3 Aver-	a Variance	StdDev	Percent	i.
72.20.89.6	1	222 172.3			1-05 00:56:49		5.73	1800	362 29856	0 600			321.343	43	-0.557	151.256	12.299	96.895	43.365	38.237	6,184		1214.9			ñ
72.20.89.6					1-05 00:59:12		5.73		363 29856	0 600		15632.5			0.643	202.451	14.229				22,081	0.333 2.57				
72.20.89.6	1			37890 2022-1			5.73	1800	362 29856	0 600		8962.27			0,305	180.714					11.827		305.604			
72.20.89.6	1				1-05 01:04:0		5.73			0 600		13535.8		97.007	0.636	182.463	13.508				14.932		352.004			
72.20.89.6	1			37892 2022-1			5.73		362 29856	0 600			137.272	~	0.911	142.08	11.92				11.868		533.09			
72.20.89.6	1	222																								
72.20.89.6	1			37893 2022-1			5.73			0 600		11545.9			0.103	159.523	12.63			207.938	14.42	41.333 1.029			96.34	
72.20.89.6	1			37894 2022-1			5.73		364 29856	0 600					0.637		11.161			179.427	13,395		5 399.47			
72.20.89.6	1			37895 2022-1					363 29856	0 600			160.047	14	0.263	196.401	14.014				21.341		3 514.422			
72.20.89.6	1			37896 2022-1					376 29856	0 600		10882.2	104.318	10		312.627	17.681	92.946			8.239		438.515			
72.20.89.6	1	222 172.3	0.89.6 1 2223	37897 2022-1	1-05 01:19:0	1 Q355B	5.53	1800	376 29856	0 600	0 1 117.169	19407.4	139.31	45.667	0.51	118.163	10.87	99.129	42.386	302.223	17.385		5 464.015			
72.20.89.6	1	224 172.3	0.89.6 1 2223	37898 2022-1	1-05 01:21:2	3 Q355B	5.53	1800	375 29856	0 600	2 49.092	23577.5	153.55	10.333	-1.051	284.579	16.869	96.514	60.563	171.811	13.108	0 0.067	578.234	24.046	94.687	
72.20.89.6	1	222 172.3	0.89.6 1 2223	37899 2022-1	1-05 01:23:5	0 Q355B	5.53	1800	375 29856	0 600	1 79.786	11316.8	106.38	58	-0.648	112.786	10.62	99.881	44.747	286.829	16.936	28.333 0.611	310.284	17.615	98.747	
72.20.89.6	1	224 172.3	0.89.6 I 2223	37900 2022-1	1-05 01:26:13	3 Q355B	5.53	1800	375 29856	0 600	2 11.513	20973.6	144.823	5	-0.596	254.066	15.939	96.146	48.034	55.795	7.47	0 0.011	484.013	22	94.273	
72.20.89.6	1	224 172.3	0.89.6 1 2223	37901 2022-1	1-05 01:28:5	2 0390B	5.03	1800	496 35531	0 600	1 26.58	18896.7	137,465	17.333	-0.146	408.394	20.209	94.184	74.067	206.267	14,362	0 0.863	652.445	25.543	92.473	
72.20.89.6	1	224 172.3	0.89.6 1 2223	37902 2022-1	1-05 01:31:14	4 0390B	5.03	1800	483 34639	0.600	2 234.916	21030.1	145.018	2	2,782	338.559	18.4	93.793	80.473	216.631	14.718	0.333 5.88	1133.88	33.673	91.94	
72.20.89.6	1			37903 2022-1			5.03		414 29856	0.600			141.509	22		143.534				285.118	16,885		582.031			
72.20.89.6	1			37904 2022-1			4.78		436 29856	0 600			146.326		0.864	147.84	12.159		66.068	87.035	9,329		602.371			
72.20.89.6	i.			37905 2022-1			4.78		434 29856	0 600			127.375			286.535			71.961		11.397		910.063			
72.20.89.6	i.	000		37905 2022-1			4.78		434 29856	0.600			179.379							266.103	16.313		3 787,484			
72.20.89.6		222																								
72.20.89.6	1	22 1/2.1		38053 2022-1					694 27411	0 580			188.578			169.287	13.011		78.576		21.024		783.395		94.6	
72.20.89.6		22: 172.3		38054 2022-1					695 27411	0 580				1.333		179.324					15.711	5.333 4.197				
72.20.89.6		22: 172.		38059 2022-1					619 27411	0 580		96945.4		1.333	1.353		14.697				21.137	6.667 4.358				
72.20.89.6		224 172.3		38060 2022-1			5.24		521 27411		0 1 104.624	39119.1		34		274.653				87.372	9.347	1.667 3.247				
72.20.89.6		222 172.3		38061 2022-1			5.24		523 27411	0 570			123.689		0.623		20.461		49.481	65.019	8,063		929.015		90	
72.20.89.6	1			38062 2022-1					529 20642	0 700		77930.9		7		127.185		98.422		789.687	28.101	89.333 1.696				
72.20.89.6	1			38063 2022-1	1-05 09:30:4	0 35C270	4.02	1245	520 20642	0 700	2 43.845	11089.2	105.305		-0.939	245.723	15.676		79.785	97.457	9.872		5 436.326			
72.20.89.6		222 172.3	0.89.6 1 2223	38064 2022-1	1-05 09:32:5	9 DC56D	4.02	1233	580 23083	0 730	1 14.075	9100.33	95.396	11.333	-0.764	486.147	22.049	91.248	53.017	919.373	30.321	8.667 0.078	607.268	24.643	89.623	
72.20.89.6	1	222 172.3	0.89.6 I 2223	38067 2022-1	1-05 09:39:3	4 DC01	5.52	1165	462 24059	0 660	2 -175.631	26790.8	163.679	1.667	-1.148	579.427	24.071	92.204	44.544	345.052	18.576	8 2.436	5 1162.85	34.101	90.457	
			0.89.6 1 2223	38068 2022-1	1-05 09:41:5	0 DC01	5.52	1165	462 24059	0 660	1 -10.316	825.105	28.725	71.333	1.812	333.892	18.273	95.939	-11.196	1474.42	38.398	77 1.561	353.31	18.797	95.503	
				38069 2022-1	1-05 09:43:5	9 DX54D	5.02	1191	488 22874	0 720	2 37.066	12357.6	111.165	49	0.058	340.504	18,453	93,878	24.558	271,348	16,473	66.667 0.673	479.309	21.893	93.157	
		•																								
		Constrained in																							1	

Figure 7.4 Storage of search statistics results in csv files and databases

7.7 Special Characteristics Identification - Steel Grade Development and Evaluation

Special characteristic templates are defined by users, and any steel grade can be identified according to various templates. Steel grade developers establish statistical parameters for their respective steel grades to guide decision-making.

「「「」」	四巻号 □ DI 2合钢种 2示钢巻完 2示合格项	ī	計 ☑ 日期范围 2022-11 2022-12 2022-12 控制网	-07	选项↑	批识别是.ide文本文件 〒中1234为特殊特 羽种都可以按1234 参数都在对应的.ide 文 十曲线首次下穿上限值	性识别学 类型来约 牛中设置	[型 [計 ,各自建立所1				存在本均	抱 \iSearch	1文件夹中	
	显示不合格 170.3.ide		1	_	SE-N5.2.ide BYSE-N5.3.id	le BYSE-N5.4.ide HG	i.4.ide 1	ICK.4.ide Q	355B.1.i	de Q355B.	.2.ide	Q355B.4	.ide		
1	产品维度	指标权重	指标名称	端口号通	道号名称	备注	厚度	宽度	得分	长度	下限	上限	均值	单点特征值	最小值
1	性能	3%	在炉时间	18	L2_FC_在炉时间	L2_FC_TOTALTIME	ĺ		分数		140			单点特征值	
2		5%	高温段时间	21	高温段时间				分数		60			单点特征值	
}	温度	10%	出炉温度	18	L2_FC_温度4	L2_FC_TEMP4	0~6	0~1600	分数		1250	1310		单点特征值	
							0~6	1600~2200			1220	1280		单点特征值	
							6~10	0~2200	分数		1210	1270		单点特征值	
							10~50	0~2200	分数		1200	1260		单点特征值	
		2%	RT2	18	R2第五道次出口温/	宴 ExittemperatureROUG	0~6	0~1600	分数		1050	1110	均值		
							0~6	1600~2200			1020	1080	均值		
							6~10	0~2200	分数		1010	1070	均值		
0							10~50	0~2200	分数		1000	1060	均值		
1		10%	FT7	21	终轧温度实际值1				分数	0~33%	PDI	PDI	均值		
2										33~66%	PDI	PDI	均值		
3										66~100%	PDI	PDI	均值		
4		15%	CT	21	CT实际值				分数	0~33%	PDI	PDI	均值		
5										33~66%	PDI	PDI	均值		
6										66~100%	PDI	PDI	均值		
7		10%	断面温度均匀的	5					分数		80			单点特征值	
3	板形	15%	F7出口板形	4	[PI]PSY SYM Flatnes	s 1921.精轧对称平直度			分数	0~20%	-15	15	均值		
3										20~80%	-5	5	均值		
0										80~100%	-15	15	均值		
1	生产	5%	粗轧除鳞	21	B2除鳞次数				分数		5			单点特征值	
2		5%	精轧除鳞	21	精轧除鳞次数				分数		3			单点特征值	
3		20%	精轧速度	4		p 847.激光检测仪的出	0~11	0~1600	分数		3.2	4.4			最小值
4							11~13	0~1600	分数		2.8	4			最小值
5							13~15	0~1600	分数		2.6	3.8			最小值
6							15~17	0~1600	分数		2.4	3.6			最小值
7							17~19	0~1600	分数		2.3	3.3			最小值
8							19~50	0~1600	分数		2.2	3			最小值
9							0~11	1600~1900			3.1	4.3			最小值
0							11~13	1600~1900			2.7	3.9			最小值
-		-				-		1		-	1	1	_		

Figure 7.5 Special Characteristic Identification Search - Steel Grade Development

7.8 Guidance on the position where strip steel should be cut off

Some special steel grades such as BS700MCK2 are particularly sensitive to temperature, and the excess parts should be cut off as much as possible before delivery to avoid a large number of quality objections.

		统						_		_				_	_				_	
	÷ 🖬 🖉	_	f# 🖺 🖽			<u>}</u>	1	≕ ‡	Y IIY	* *	• •	₽.₽=	· m -	<u>iul</u> # 📼	🖪 (<u>■</u> ĭ ≎ ++ +- +	→ ⊮∗∗ ⊘ ⊘ Xıy Xıy	1 8	RT	🕨 🕼 📢 A
搜索	索统计	í i	网卷列表	01 质检 - 长度	·															
	IP	Disk	钢卷号	生产日期	钢种		宽度					DC 百分日			通道		备注		自上限	
	172.20.89.6 172.20.89.6	D	22183039 22183048	2022-08-17 10:24:13 2022-08-17 10:44:38	BS700MCK2	8.02	1800	272 184	31785 32368				CT CT	21	126	CT实际值 CT实际信		550 550	570 570	11.52
	172.20.89.6	D	22183048	2022-08-17 10:44:38	BS700MCK2 BS700MCK2	12.01	1500		32368				СТ	21	126 126	CT实际值 CT实际值		570	570	12.18
	172.20.89.6	D	22183535	2022-08-18 06:58:02	BS700MCK2 BS700MCK2				27251				CT	21	126	CT实际值		550	570	9.32
	172.20.89.6	D	22183605	2022-08-18 07:14:49	BS700MCK2	8.02	1500	271	26708	860			CT	21	126	CT实际值		570	590	10.79
	172.20.89.6	D	22183613	2022-08-18 06:41:45	BS700MCK2	8.02	1500		27250				CT	21	126	CT实际值		570	590	15.39
	172.20.89.6	E	22183049	2022-08-17 10:47:09			1800		31785				CT	21	126	CT实际值		550	570	14.01
	172.20.89.6	E	22183050	2022-08-17 10:49:54		10.02	1850	220	33116				CT	21	126	CT实际值		560	580	13.76
1	172.20.89.6	E	22183596	2022-08-18 06:55:03	BS700MCK2	8.02	1500	273	26708	860	570	1 4.21	CT	21	126	CT实际值		570	590	11.50
1	172.20.89.6	Ε	22183599	2022-08-18 07:02:01	BS700MCK2	12.01	1500	182	26437	860	550	3 8.16	CT	21	126	CT实际值		550	570	14.86
1	172.20.89.6	Ε	22183611	2022-08-18 06:36:07	BS700MCK2	8.02	1500	279	27250	860	570	1 4.67	CT	21	126	CT实际值		570	590	13.05
2 1	172.20.89.6	Ε	22185577	2022-08-21 00:06:30	BS650MCK2	10.03	1500	224	27251	860	540	1 17.28	CT	21	126	CT实际值		540	560	38.66
3 1	172.20.89.6	F	22183061	2022-08-17 11:32:27	BS700MCK2	8.02	1800	271	31785	860	550	1 4.37	CT	21	126	CT实际值		550	570	11.86
1 1	172.20.89.6	F	22183063	2022-08-17 11:26:02	BS700MCK2	9.82	1800	221	31610	860	550	1 4.74	CT	21	126	CT实际值		550	570	10.46
5 1	172.20.89.6	F	22183601	2022-08-18 07:06:19	BS700MCK2	8.02	1500	273	26708	860	570	3 4.80	CT	21	126	CT实际值		570	590	13.13
5 1	172.20.89.6	F	22183604	2022-08-18 07:12:39	BS700MCK2	8.02	1500	272	26708	860	570	1 4.38	CT	21	126	CT实际值		570	590	11.93
	172.20.89.6	F	22183612	2022-08-18 06:38:11	BS700MCK2	8.02	1500	240	27250	860	570	3 5.18	CT	21	126	CT实际值		570	590	12.43
	172.20.89.6	F	22185575	2022-08-21 00:01:55	BS650MCK2	10.03	1500	224	27251	860	540	1 27.10	CT	21	126	CT实际值		540	560	60.75
	172.20.89.6	F	22185579	2022-08-21 00:49:12	BS650MCK2	12.02	1500	186	27251	860	540	1 21.84	CT	21	126	CT实际值		540	560	40.71
	172.20.89.6	н	22183047	2022-08-17 10:42:07	BS700MCK2	9.82	1800	222	31785	860	550	2 5.04	CT	21	126	CT实际值		550	570	11.17
	172.20.89.6	101	排井住识别															550	570	15.08
	172.20.89.6			□ 显示钢卷	空敷信白	☑ 日其	坊田				416	卡中.1.2.3	/ 光持联络	被迫剧光到				570	590	11.97
	172.20.89.6		羽巻号	✓ 显示合相		2022-0		·····		1	任何	钢种都可以:	\$ 1.2.3.4	类型来统计				570	590	12.82
	172.20.89.6			☑ 显示石台		2022-0		×	搜索	1	统计	参数都在对	<u></u>	件中设置各自	建立所	负责钢种的统计参数		580	600	14.39
	172.20.89.6		包含钢种	10 ME (1991)	114 - 52	12022-0	0-24				.4 šfć	计曲线首次	下分上限围	的关部长度			-	540	560	16.95
	172.20.89.6				HOR AGE 1		í.											550 550	570	31.88
	172.20.89.6 172.20.89.6	1EU	n 70.3.ide BV	V300TP.1.ide HG.4.id	B MCK.4.Ide	Q235B.	2.ide L	235B.4	l.ide								(550	570 570	19.30
	172.20.89.6	-	指标名称 詳	口号 通道号	名称		上际	Į	厚度下	限								570	570	11.85
	172.20.83.6	1	CT 2	21 120	CT实际值		620		6.0									570	590	12.38
	172.20.83.6																	580	600	32.73
	172.20.89.6																	540	560	48.57
	172.20.00.0	1																540	500	40.37
										628.	257		北北山豆腐。	Len:847.谢光	检测仪	的出口带铜速度				
										609.	677	- 21:125)0		1000						
										591.		- [2(:126)C	实际值							
												- [21:101]0								
										572.5		L [21:132]C	TRA							
										553.9			A N			1				
										535.3	355		\					~~~	4	
										516.3	774		- <u>-</u> ~	\sim		\sim			-	
										498.1	194		1							
												19.918 m		9.754 m	-	589 m 139.425	m 179.261 m	219.		
												19,910 M	55	1794 m	39.	505 m 139,425	m 179.261 m	219.	190	
											*		<u> </u>							

Figure 7.6 Guidance on the position of strip steel to be cut

7.9 Search and download the original data of theme slicing

Raw data is an important basis for analysis. A complete digital steel coil records thousands of variables. The CFS search system can quickly generate a list of steel coils and signals that users are interested in a certain topic .csv files can be stored in the database at the same time. All signal raw data in the topic is saved in .bin format for direct analysis and download. The length range can be specified when searching for raw data, The export method can be 1 point per meter, multiple points per meter, or how many points to export.

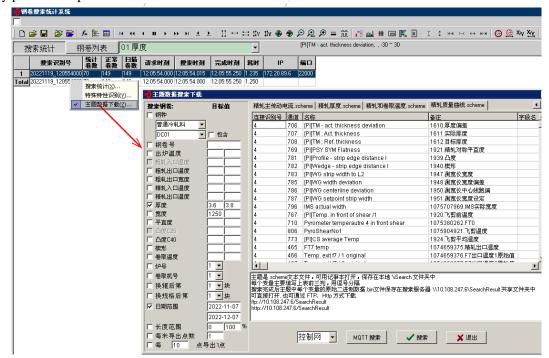


Figure 7.7 Search Download Theme Slice Raw Data

	素统计	j t	网卷列表	01厚度					_									
	IP	Disk	钢卷号	生产日期	钢种	厚度	宽度	长度	重量	FDT	СТ	DC						
5	172.20.89.6	- 1	22238054	2022-11-05 09:12			1250	695	27411		580							
6	172.20.89.6	1	22238055	2022-11-05 09:1-			1250	779	27411		580							
<u> </u>	172.20.89.6	1	22238056	2022-11-05 09:1	6:35 SPHC-	T 3.52	1250	779	27411	0	580	1						
	172.20.89.6		2022111	19_121627187	@pda (localho	st_3306) -	λ.											_
	172.20.89.6		(E) 编	辑(E) 查看(∀) 1		0												
-	172.20.89.6 172.20.89.6	1								-				1.	-			
	172.20.83.6		📑 导入向 🖏	🗣 🗔 导出向导	🗑 筛选向导		查看	三 表 1	自查看		备注		트 图像	🔓 z 升序排序	Zin 降序排序	🦕 稻	除排序	
	172.20.89.6	1	IP	Disk	CoilId	ProductDT			SteelGra	de	1	Thickness	Width	Length Wei	ight FDT	CT	DC	
_	172.20.89.6	i	172.20.89	.6 I	22238054	2022-11-05	09:12:	58	SPHC			3.99	1250	695	27411	0	580	1
	172.20.89.6	1 I	172.20.89	.6 I	22238055	2022-11-05	09:14:	48	SPHC-T			3.52	1250	779	27411	0	580	2
1	172.20.89.6	1	172.20.89	.6 I	22238056	2022-11-05	09:16:	35	SPHC-T			3.52	2 1250	779	27411	0	580	1
	172.20.89.6	1	172.20.89	.6 I	22238057	2022-11-05	09:18:	47	SPHC-T			3.52	1250	782	27411	0	580	2
	172.20.89.6	1	172.20.89	.6 I	22238058	2022-11-05	09:20:	42	SPHC-T			3.52	1250	782	27411	0	580	1
1	172.20.89.6	1	172.20.89	.6 I	22238059	2022-11-05	09:22:	31	SPHC			4.55	5 1228	619	27411	0	580	2
	172.20.89.6	1	172.20.89	.6 I	22238060	2022-11-05	09:24:	24	SPHC			5.24	1260	521	27411	0	570	1
	172.20.89.6	1	172.20.89	.6 I	22238061	2022-11-05	09:26:	40	SPHC			5.24	1260	523	27411	0	570	2
	172.20.89.6	1	172.20.89	.6 I	22238062	2022-11-05	09:28:	27	JSC2700)		4.03	1245	529	20642	0	700	1
	172.20.89.6	1	172.20.89	.6 I	22238063	2022-11-05	09:30:	40	JSC2700)		4.02	1245	520	20642	0	700	2
	172.20.89.6	1	172.20.89	.6 I	22238064	2022-11-05	09:32:	59	DC56D+	Z		4.03	2 1233	580	23083	0	730	1
	172.20.89.6	1	172.20.89	.6 I	22238065	2022-11-05	09:35:	17	CR2			3.02	2 1197	805	23387	0	660	2
	172.20.89.6	1	172.20.89	.6 I	22238066	2022-11-05	09:37:	21	JSC2700)		6.02	1210	383	22294	0	700	1
	172.20.89.6	1	172.20.89	.6 I	22238067	2022-11-05	09:39:	34	DC01			5.5	1165	462	24059	0	660	2
	172.20.89.6		172.20.89	.6 I	22238068	2022-11-05	09:41:	50	DC01		5	5.52	1165	462	24059	0	660	1
)	172.20.85.6	1	172.20.89	.6 I	22238069	2022-11-05	09:43:	59	DX54D+	Z-JD		5.02	1191	488	22874	0	720	2
í	172.20.83.6	1	172.20.89	.6 I	22238070	2022-11-05	09:46:	08	DX54D+	Z-JD		5.02	1191	475	23098	0	720	1
2	172.20.83.6		172.20.89		22238071	2022-11-05			DC54D+			4.02			23387	0	700	2
3	172.20.89.6	1	172.20.89		22238072	2022-11-05	09:50:	33	DC54D+	Z		4.02	1178	614	23387	0	700	1
i	172.20.89.6	i	172.20.89		22238073	2022-11-05			DC54D+			4.03			23387	0	700	2
5	172.20.89.6	i	172.20.89		22238074	2022-11-05			DC04			3.52			23387	0	710	1
5	172.20.89.6	1	172.20.89		22238075	2022-11-05			DC04			3.5			23387	0	710	2
7	172.20.89.6	1 I	172.20.89		22238076	2022-11-05			DC04			3.5			23387	0	710	1
F	172.20.89.6	1	172.20.89		22238077	2022-11-05			DC04			3.5			23387	0	710	2
			172.20.89		22238078	2022-11-05			DC03			3.5			21518	0	660	1
			172.20.89		22238079	2022-11-05			DC03			3.5			21105	0	660	2
			172.20.89		22238080	2022-11-05			DC03			3.5			19844	0	660	1
			172.20.89		22238081	2022-11-05			DC03			3.5			19844	0	660	2
			172.20.89		22238082	2022-11-05			CR3			3.5			19844	0	700	1
			172.20.89		22238083	2022-11-05			CR3			3.5			19844	0	700	2
			172.20.89		22238084	2022-11-05			DX52D+			3.0		689	19044	0	660	2

Figure 7.8 Steel coil list stored in csv file and database

8 DSO - Device diagnostic Synchronous Oversampling system

DSO - Device diagnostic Synchronous Oversampling system is based on PDA system.

PDA system supports data acquisition of 50 kHz and 0.02 ms sampling period, the full historical data are stored, the real-time FFT calculation and curve analysis are supported, flexible and continuous time slice may be selected, the special AD converter board and special storage system may be used, the standard PLC system is also used to complete signal access and quickly realize system deployment.

The over sampling AI module of PLC system can realize the sampling rate of 16KHz, 20kHz, etc., which can meet the access of acceleration sensor, speed sensor, displacement sensor, etc. in the equipment diagnosis system. At the same time, the process data such as speed, current, pressure, flow, temperature and other conventional acquisition cycle signals can also be accurately and synchronously collected, avoiding the complicated offline alignment work in the later stage.

The system is simple and transparent, online and offline data can be directly connected to the diagnostic analysis system, and the calculation results can be obtained immediately, supporting 2 million spectral lines.

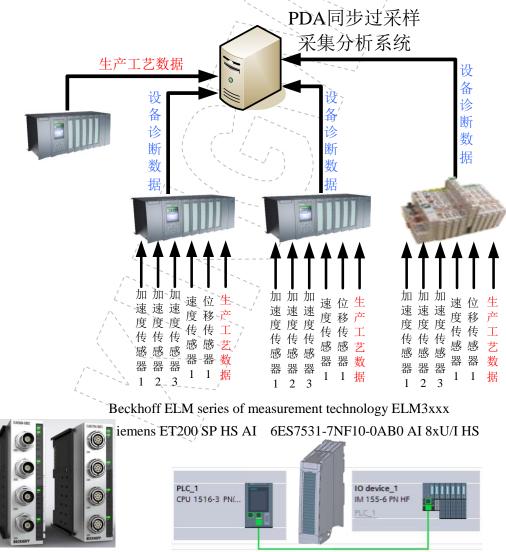


Figure 8.1 Equipment Diagnosis Data Acquisition System Based on PLC

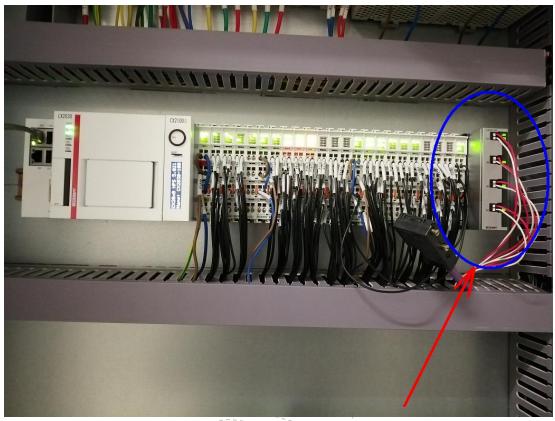
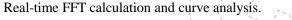



Figure 8.2 Beckhoff PLC oversampling data acquisition

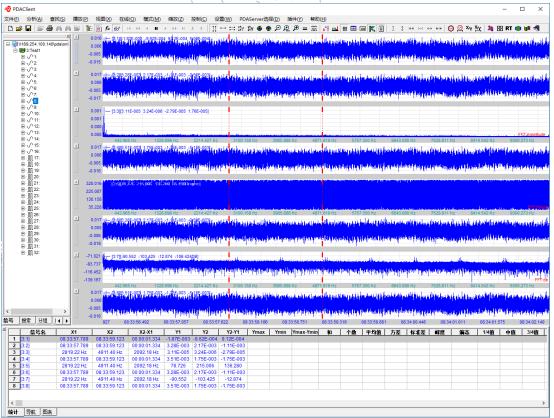


Figure 8.3 real-time FFT calculation and curve analysis

9 RSA - Roll Spalling Alarm and Quick Stop System

During the rolling production process of the rolling mill, the rollers are in a complex stress state. The periodic thermal stress caused by contact heating between the rollers and the rolled piece, water cooling of the rollers, contact stress caused by rolling load, shear stress, and residual stress, etc., such as unreasonable material selection, design, manufacturing process, or local heating caused by steel sticking during rolling, can easily cause roller failure. Roll peeling is the primary form of roller failure.

Based on the characteristics of the process data before roll peeling, the Roll Spalling Alarm and Rapid Stop System can issue warning and rapid stop signals. At this time, only the roll needs to be pulled out for inspection normally to avoid the impact of complete roll peeling on other systems and long-term fault handling.

Figure 9.1 Roll spalling form

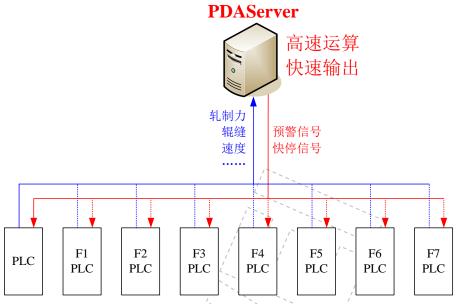


Figure 9.2 Block Diagram of Roll Peeling Warning and Quick Stop System

10 RCM - Roller Current Monitoring system

The Roller Current Monitoring system monitors the status of the roller bed, which can timely avoid surface scratches on the strip and identify other conditions of the roller bed. Ultimately, it achieves roller bed status prediction, proactive maintenance, improves equipment online rate, reduces fault time, and improves product surface quality.

The hot rolling laminar flow roller bed is located between the finishing mill and the coiler, and its main function is to deliver the finished strip steel to the coiler. At the same time, when the strip steel is transported on the laminar flow roller bed, cooling water will continue to spray above the roller bed to cool the strip steel. The total length of the laminar roller bed is generally over a hundred meters, with hundreds of rollers. Hundreds of rollers are controlled by several controllers, each controlling multiple motors to control the operation of a group of rollers, with approximately 10 to 30 rollers in a group. Due to the high water vapor and temperature in the working environment of the laminar flow roller table, it is easy for the roller table to overheat and lose lubricating grease. Water vapor often seeps into the motor, causing faults such as motor grounding, low motor insulation, and motor jamming. This can further cause scratches on the strip steel, seriously affecting product quality.

For motor monitoring, it is usually arranged to manually monitor the current of the motor on the display interface with the naked eye. When abnormal changes in current are found, a manual alarm is given. Due to the presence of multiple sets of roller tracks with multiple motors, the amount of motor data is enormous, and some abnormal current/changes are difficult to detect with the naked eye, making it difficult for manual detection of motor faults in a timely manner.

The layout of a rough rolling roller table is shown in the following figure:

Figure 10.1 Hot Continuous Rolling Rough Rolling Roller Track

The layout of a certain layer of cold roller table is shown in the following figure:

Figure 10.2 Cold Roller Table for Hot Continuous Rolling Layer

The installation diagram of current transformer is as follows:

Figure 10.3 Layout of Motor Current Transformer

The block diagram of the current monitoring system is as follows:

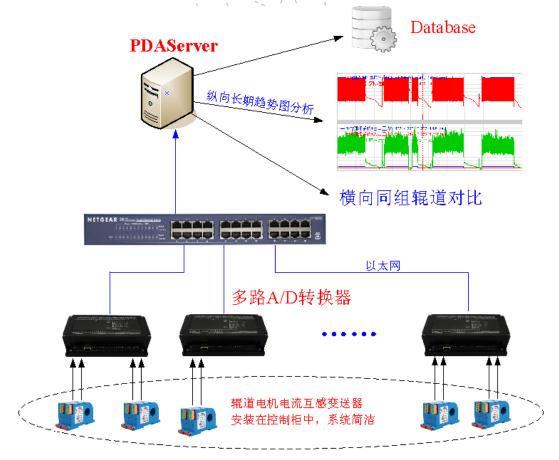


Figure 10.4 Schematic diagram of current monitoring system

11 HDP - High frequency density and speed Data Platform construction

High frequency refers to sampling time, high density refers to space, and high speed refers to the speed of accessing the platform.

11.1 Traditional - Data Platform

Based on databases, it is basically in seconds.

11.2 High frequency - Data Platform

There is a huge market demand for secondary analysis and development based on high-resolution data, but the threshold is high. Currently, data analysis is mostly done in seconds, and upgrading the data platform to High Density Data Platform is an ideal choice.

If the platform's rich analysis methods and close connection with business can be integrated with high-resolution data, it will definitely create a domestically unique high score and high density platform, achieving a sudden rise.

11.3 High Frequency and High Density - Data Platform

As a transitional platform, it can store high-frequency and high-density data without requiring access speed. It is easy to build a conventional platform in combination with PDA.

Advantages: There are no special requirements for platform hardware performance, which can remain unchanged, with almost no additional costs, minimal workload, and no technical bottlenecks.

Disadvantage: There will be no improvement in access speed.

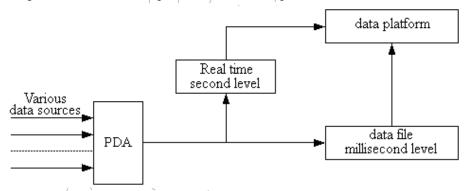


Figure 11.1 Data Flow of High Frequency and High Density Data Platform

11.4 High Frequency High Density High Speed - Data Platform

This is the ultimate goal, which can store high-frequency and high-density data, and the access speed requires a return result in seconds.

All applications must establish a result time of 3 seconds, otherwise the user experience will be poor. For example, if a search command on Google, Baidu, or Taobao produces results in 10 seconds, it will be difficult to promote. These are civilian applications, and industrial high-frequency and high-density data platforms should have higher standards.

For data at the second, minute, and meter levels, if it meets business requirements, it should still be retained. However, the platform performance has changed, and such applications can produce results in less than one second.

The cost should be appropriate, the plan should be carefully selected, and the technology should be optimized.

11.5 Implementation method

The full installation of PDA in each project will lay a solid foundation for a high-resolution data platform, which can form centimeter level, millisecond level, or even microsecond level data platforms in the short term. By fully utilizing and exploring the super strong capabilities of PDAs that are very suitable for processing large amounts of data, it will form a strong competitive advantage in domestic and international markets.

High resolution and high-density data platform is a practical requirement for data analysis. Once a high resolution and high-density high-speed data platform is formed, it will be able to establish technological advantages, and the threshold for a second level data platform is relatively low. As long as fully open PDAs are popularized in every project, such a platform will have a foundation and can be developed smoothly.

11.6 Cooperation with the outside world

High performance controllers in China's industrial control field are basically monopolized by foreign countries, and field bus standards and communication protocols are almost controlled by foreign companies. The high-speed acquisition of industrial data faces many technical barriers and high-intensity encryption from foreign countries. It is a luxury to independently obtain high-frequency and high-density data from our own factories, and this situation urgently needs to be changed.

For many years, our R&D team has been dedicated to the exploration of communication protocol research and development, field bus analysis, high-speed data acquisition, real-time data compression, massive data storage, online data analysis, and other technologies. We have devoted infinite energy and enthusiasm, worked tirelessly, and finally achieved some breakthroughs. We hope to share and encourage with everyone, and make some modest contributions to improving the production and quality of industrial products, equipment testing, fault diagnosis, Industry 4.0, and big data quality analysis in China. This can promote the joint action of engineering and technical personnel to completely solve a bottleneck problem in the industrial control field.

Some high-speed data collection systems in foreign countries are becoming increasingly closed, with layers of encryption. As a strategic partner, it is necessary to require unconditional open data interfaces.

In order to significantly reduce the cost of high-frequency data collection, we have made unremitting efforts and launched major customer systems, annual package systems, etc., laying the foundation for the widespread popularity of PDAs. This way, the cost of each project can be basically ignored, and installing several sets of high-frequency data collection for each project will not be a problem, laying a solid foundation for high-resolution data platforms.

PDA is only responsible for basic data collection, storage, and analysis functions, and all subsequent tasks are done by the platform, including rapid exchange, conversion, storage, analysis, calculation, display, and interaction between the platform and high-frequency data. PDA provides underlying support, which will be a milestone and revolution for the data platform, with profound strategic significance. We hope to shine a light on the construction of platforms in China. The more platforms we build, the better, and the faster we build, the better.

12 Project performance and typical project application

The PDA system is widely used in the large and medium-sized enterprises. Its project performance is not listed one by one.

No.	Process equipment
1	The silicon steel sheet mill
2	Hot strip rolling mill
3	CSP - Compact strip production
4	Cold rolling mill
5	Composite mill (bullet shell)
6	Steelmaking, continuous casting
7	Steel pipe
8	Heating furnace
9	Temper mill
10	Laboratory
11	Flash butt welding machine
12	Measurement of battery consumption curve
13	Pneumatic conveying experiment
14	Cement
15	Energy management
16	Data telemetering service
17	Reforming of Data Acquisition System
18	Brewery information system
19	Point Map Analysis System of a Brewery
20	Data analysis for Brewery CO ₂ recovery prediction and measured data
21	Main drive SL150
22	Quality management and digital coil
23	Unmanned locomotive and intelligent iron metal transportation system
24	All-weather umanned wharf
25	Electro hydraulic servo control system
26	Automobile monitoring system
27	HSM digital coil system
28	CSM digital coil system
29	IGBT Flexible DC Chopper Power Supply - Green Intelligent Super Arc Furnace
30	MPT(Mill Pacing Tracing)
31	

12.1 PDA system of a hot temper mill

Temper mill occasionally oscillated in 2011.3.8, and could not product, inappropriate pressure ring parameter setting was found after the historical curve (in red circle below) was analyzed, and normal production was restored after adjustment.

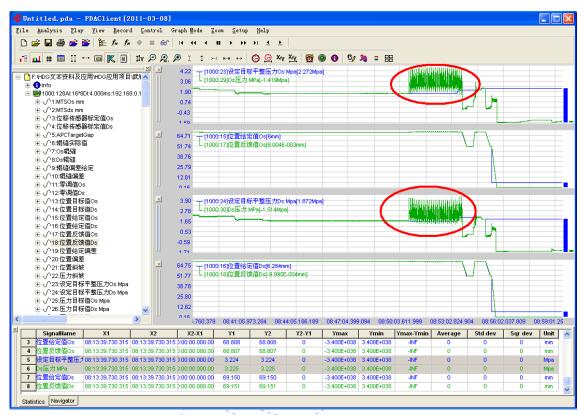


Figure 12.1 Application of PDA in Leveling Machine

12.2 Hydraulic vibration PDA system for thick slab continuous casting mould in a steel factory

The mould is the core equipment of continuous casting machine, Hydraulic vibration can effectively reduce the friction resistance of casting billet and mould room compared with the mechanical vibration, so as to improve the surface quality of billet, improve the drawing speed, increased yield; the plate spring guide is used, no mechanical wear, equipment maintenance workload and cost can be reduced; anisotropic small deviation; online adjustable amplitude, frequency and waveform, achieve sinusoidal and non sinusoidal oscillation can be realized when the prestressed spring orientation precision is used, to meet the requirements of the steel casting process.

Figures 12.2 and 12.3 show the vibration process of starting and stopping, commissioning personnel may adjust various parameters according to waveform, make feedback to follow reference as fast as possible and the overshoot is small, sometimes the servo valve blockage can be analyzed Intuitively from the curve because hydraulic oil is not clean, the reasons is found out quickly. Normal production worker can call historical curve after vibration stopping, the quantitative analysis may be done with signal interference, high friction, oil plug or irregular operation.

🎻 D:\Untitled.pda - PDAClient [2011-03-03]						
<u>File Analysis Play View Record Control Grap</u>	oh Mode Zoom ≦etup Help					
🗋 🚔 🖬 📾 📽 🎬 🏂 🌆 🔹 🕬 🛛 🕬		🗗 🖬 🏛 🕅 🖽 🚥	🗆 🔣 🗐 🏦 🖉 🖉 🗩	1 1 ж юн ↔ 6) 🥝 Xy Xy 👸 🎯) 🚯 💱 🦄 = 88
		线给定[26.963mm]				FIALER LILLINGERED
± 1 info		病雪走[26.963mm] 际位移[25.016mm]	0.0	A & & A & A & A & A & A & A & A & A & A	GADOOGCAGAAAAAAA	AAAAAAAAAAAAAAAA
Building State 14 (2000) 12 (2000) 10 1 0 218 1 CMO.		diff. Black of the line		NAMANANAN	14112211221244444	121 201 22 24 201 201 201
■ √1:波形曲线给定	23.83		V V I	A A A A A A A A A A A A A A A A A A A	VUYYYYYYYYY	
□ √2左缸实际位移	22.08					
由-√3:右缸实际位移	▲ 26.95 — [8200:3]右缸实	FITTER 210mm			*************	1212112222222112121
由 √4:左缸上腔压力 由 √5:左缸下腔压力	- 10100 - [0100.0httl134	gy 12 apr 25.5 i Uninij	Λ Λ		какылыкалығын	<u>AHAHAAJIIIIIJAIIAHA</u>
■ √ ◎ 左顧下腔压力	25.32			34544404440444	477 ((()) /((////////////////////////////	2010/01/03/01/00/03/01
电、介?.右缸下腔压力	23.69		V V 1	^ • • ^ 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	TATELLAR	IN THE REPORT OF THE REPORT
□、△8浇铸速度	22.06				**********	***************
由、介9:两缸位移差	▲ 130.63	它压力[16.895KN]		MMMMM	~~~~~~~~~	
由、√10.左缸伺服阀给定		控压力[144.824KN]				
■-√11:右缸伺服阀给定	00.01	12/12/93[144.024604]				
車-√^12:两缸出力差	50.99					
□ √13:左缸伺服阀阀芯反馈	11.17		~~~	mmm	*******	
由	▲ 130.06	它压力[13.965KN]		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	www.www.www.www.www.www.www.www.www.ww	
由-√15:两缸出力和		控压力[143.750KN]	•••			
	00.00 1 1.00	12/12/30(143.//30k04)				
E-√18:Con1Al18	49.55					
± √19:Con1Al19	9.29			mm	~~~~~~~~~~~~	
E 20:Con1 Al20	▲ 23.83 18200-100左缸信	服阀给定[24.723%]				
• • • • • • • • • • • • •		服阀结龙[24.723%]]服阀阀芯反馈[23.340%]				
⊕	12.01	1900,0010,0010,001,000,001	A A	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	LAAABAAAAAAAAAAA	ANA KANARANJANA (
⊕-√^23:Con1 Al23	1.30				**********	
1 24:Con1 Al24	-9.96					1111111111111111111
①	≥ 23.98 18200-111万缸信	服阀给定[25.790%]				
⊕ √ 26:Con1 Al26		1服阀给走[25.790%] 1服阀阀芯反馈[26.904%]				
	10.01	180.00100100120.304%]	8.8	<u> </u>	YANDONYALINAAN	
E - √ 22:Con1 Al28 E - √ 29:Con1 Al29	2.17		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u> </u>	¥ V V V V V V V V V V V V V V V V V V V	
E √ 25.0011 Al25	-8.73					111111111111111111
I I I Anna Anna	1.347.450 18:05:51	.297.950 18:05:59.248.449	18:06:07:198.948 18:06:15:149.4	448 18:06:23.099.947 1	3:06:31.050.447 18:06:3	9.000.946 18:06:46.951
X SignalHame X1 X2	X2-X1 Y1	Y2 Y2-Y1	Ymax Ymin	Ymax-Ymin Avera	ige Std dev	Sqrdev Unit ٨
1 波形曲线给定 18:05:49.170.999 18:05:49.170.999 00	0:00:00.000.000 5.891E-039 5.8	91E-039 0	-3.400E+038 3.400E+038	-INF 0	0	0 mm 📄
2 左缸实际位移 18:05:49.170.999 18:05:49.170.999 00	0:00:00.000.000 8.635E-039 8.6	35E-039 0	-3.400E+038 3.400E+038	-INF 0	0	0 mm
3 右缸实际位移 18:05:49.170.999 18:05:49.170.999 00	0:00:00.000.000 8.635E-039 8.6	35E-039 0	-3.400E+038 3.400E+038	-INF 0	0	0 mm
4 左缸上腔压力 18:05:49.170.999 18:05:49.170.999 00	0:00:00.000.000 8.655E-039 8.6	55E-039 0	-3.400E+038 3.400E+038	-INF 0	0	0 KN
5 左缸下腔压力 18:05:49.170.999 18:05:49.170.999 00	0:00:00.000.000 8.674E-039 8.6	74E-039 0	-3.400E+038 3.400E+038	-INF 0	0	0 KN
6 右缸上腔压力 18:05:49.170.999 18:05:49.170.999 00		75E-039 0	-3.400E+038 3.400E+038	-INF 0	0	0 KN 🗸
		over oppo	0.1005.000			- Lini 🔍
Statistics Navigator						

Figure 12.2 Mold Hydraulic Vibration Starting Process Curve

):\Untitled.pda - Pl e Analysis Play View					Setup Help									_ 0
	fs fs =		ia aa a						•• • • •	' 1 ⊅ →с но		Ya. Xa. 🚟 🖉	A 6. 1	
	; <i>]*]*</i> –					<u>1</u>	# □			· X + 25 89	· · · Ø 💆	W		• - •
🗄 🚯 info				27.2	011日相的的	建油油的油菜中非	Similation of	all little and	huria					
- #8200:32AI:4*8DI:2.000ms	10.1.0.218:1:Cf	MO:	=	25.5	3.4					M				
□ 1:波形曲线给定				23.8	s n Rith	A. A. Kuba A. P	a li falla a futalita		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					_
由 √2 左缸实际位移				22.1	9 KIDKIDKIDKID	TING MUTUUNI	IN THE REPORT OF THE REPORT OF THE	ATTI HUMAN AND AND AND AND AND AND AND AND AND A						
由 √3:右缸实际位移			_					tion is						
● √4:左缸上腔压力			×	27.1	6 計畫構動調	前時時時期	(ABD WILL LINE)	hillillillilli						
। √5:左缸下腔压力				25.5	i2	ALC REPORTS		a anns shuisi fa		81.				
□ √6:右缸上腔压力				23.8	7 4 4 4 4	41.544	644644	and Albert	ÜDADDI ADADAAAA	**				
由-√7:右缸下腔压力				22.2	,如何開閉	a here were	HY DURINH DURI							
由 √8:浇铸速度														
● √9:两缸位移差			×	130.5	i5 — [8200:4]2	· 前上腔压力(16)	HTKN]	****	wwwwwwwww	w				
由 √10:左缸伺服阀给定				90.7	s L (8200.5)Z	副下腔压力[14]	.016KN]	/						
由-√11:右缸伺服阀给定				50.9		-								
由、介12:两缸出力差	<						THE REAL PROPERTY AND A							
 ①、小13:左缸伺服阀阀芯, ①、小14:右缸伺服阀阀芯, 				11.1	6	~			MANANANA ANA ANA ANA ANA ANA ANA ANA ANA	vv-				
▲ √ 15:两缸出力和	c lat		×	129.6	4	al T腔压力[14]	Concernance of the second	*****	mmmmmmmm	w				-
				89.5		卸下腔压力[140								
						and i strates of the	/							
				49.4	15		1							
				9.3	6 *********	***		****************	**********	w				
± √20:Con1Al20			×	25.6		шынынынын	แน่นและการและ	Hu.						
± √^21:Con1Al21					- HUHHHHHHH	aruf kina kapaté		addition						
			17	13.6	4	i di kata kata kata kata kata kata kata kat	are paint in a	en de la company Contra de la company	*************					
• • • • • • • • • • • • •				1.5	э , , , , , , , , , , , , , , , , , , ,	attal al al tatta	l al cristel al cristi	attina nititi	HANAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	90-				
		/		-10.4	s NUNUKUKUM	UHUBUMUANA	DRIDBUDRDRUDBUD	(IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII						
⊕ √^25:Con1Al25		4.	- I I I I											
E \(\lambda 26:Con1Al26\)		15	- ×	25.9	¹¹ 1441,1929,9441	前印刷刷刷刷	(1 1 1 1 1 1 1 1 1 1	dilline.						
• • • • • • • • • • • • •				14.1	4 (11) (23)(13)			ATTALAH MALANA KALAKI	hame					
		1 1		2.3	s /. A / /	And And .	41.641.6	arres Netret		We				
		/	N	-9.3	a KIINHKIIKIIN		IN INTEREDUCTION	())))))(()))(()))(()))(())						
130:Con1 Al30			`. <u>~</u>		1.005.624 1	7:11:16.260.910	17:11:29.516.196	17:11:42.771.48	13 17:11:56.026	.770 17:12:09:28	2.056 17:12:22	.537.342 17:12:3	5.792.629 17:	12:49.0
	1	X2	X2-X1		¥1	Y2	¥2-¥1	Ymax	Ymin	Ymax-Ymin	Average	Std dev	Sqr dev	Uni
			9 00:00:00:00:00		-5.891E-039	- 5.891E-039	0	-3.400E+038	3.400E+038	-INF	0	0	0	mm
			9 00:00:00.000.0		8.635E-039	8.635E-039	0	-3.400E+038	3.400E+038	-INF	0	0	0	mm
			9,000.00.00.00.0		8.635E-039	8.635E-039	0	-3.400E+038	3.400E+038	-INF	0	0	0	mm
			9 00:00:00.000.0		8.655E-039	8.655E-039	0	-3.400E+038	3.400E+038	-INF	0	0	0	KN
			9 00:00:00.000.0		8.674E-039	8.674E-039	0	-3.400E+038	3.400E+038	-INF	0	0	0	KN
			9 00:00:00.000.00		8.675E-039	8.675E-039	0	-3.400E+038	3.400E+038	-INF	0	0	0	KN

Figure 12.3 Hydraulic Vibration Stop Process Curve of Crystallizer

Figure 12.4 shows the vibration curve during normal production, with a sampling period of 2ms. Based on the curve, control system parameters can be adjusted, system working status can be determined, and fault causes can be identified. The control system is S7-400+FM458.

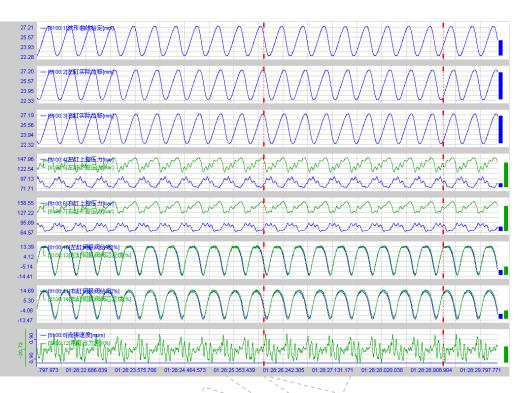


Figure 12.4 Hydraulic vibration curve of a certain thick plate continuous casting mould

12.2 PDA system at 1700mm hot strip mill

The below figure is PDA curve of 1700mm Hsm, 9200 points are collected, time base is 1.95ms, Three PDA systems of German brand are replaced after control system is reformed. Performance is significantly improved, the operation is simpler.

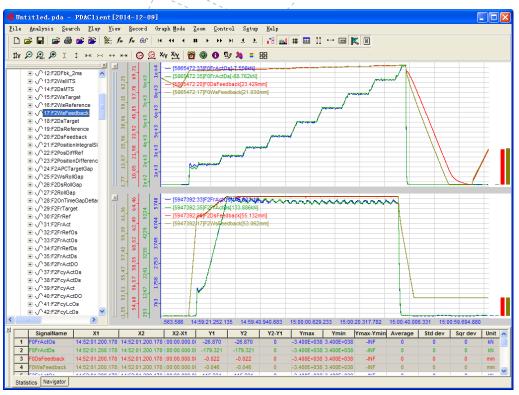


Figure 12.5 Application of PDA in the Hot Strip Rolling Control System

12.4 Performance testing system for a large AGC oil cylinder factory

Figure 12.6 shows the hysteresis test curve of an AGC cylinder from a certain oil cylinder factory. The hysteresis reflects performance indicators such as hydraulic cylinder friction, with a sampling period of 0.5ms. A report can be directly generated based on the measurement curve.



Figure 12.6 hysteresis test curve of a large AGC oil cylinder

12.5 A pneumatic conveying experimental data testing system

PDA supports complex mathematical formula, It may open a week of experimental data and find the law.

Figure 12.7 Application of PDA in pneumatic conveying systems

12.6 PDA system of a steel pipe plant

9906 points are collected, collection period is 2ms, PLC is the SIEMENS S7-1500 and TDC, the acquisition control function is: hydraulic pass control system, main drive and auxiliary drive, mill district hardware IO, control logic, stretch reducing mill main drive, stretch reducing mill cooling bed auxiliary transmission, hardware IO and control logic.

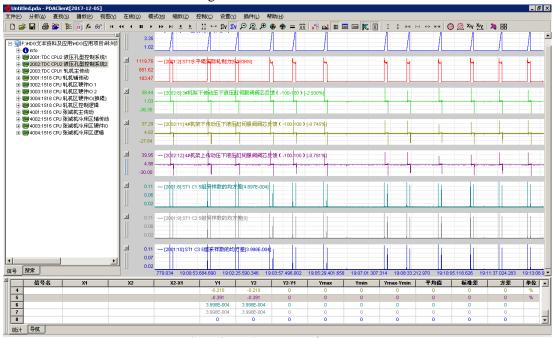


Figure 12.8 Application of PDA in Steel Pipe Plants

The function RisingEdgeInterval calculates the rolling time of each steel pipe.

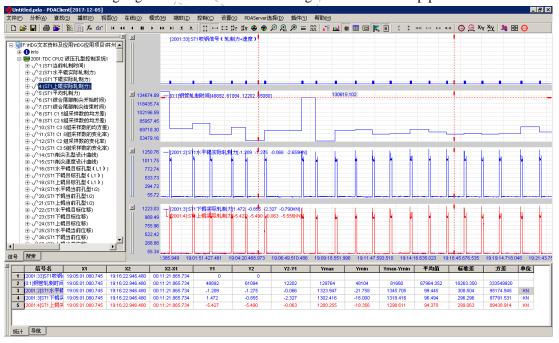


Figure 12.9 Customized function statistics of rolling time for steel pipe factories

12.7 Power management system 某水泥厂电能管理系统

Energy saving and emission reduction is an effective means to reduce costs. PDA provides a comprehensive analysis by equipment energy consumption characteristics, and also as a daily

management tool. The report column is dynamically set according to the .pda analysis strategy. The following figure shows the electricity statistics of hundreds of meters in a cement plant.

	帮助(H)											- 1											
訂	空压机用电量 厉	科煤	磨设备2	总表	总网	脊分表	总和 搅	拌站	水泥雕	季水 泵	外供电视	5 水	泥磨电能	统计	大 熟料	电能统	计表生	料磨月	用电量月	报表	窑头煤	磨┥	►
			空压机3	3901	空压机	902	污泥处理 空压机3		窑头空册	E UL 1#	窑头3 机13		空压机4	1001	空压机	4002	空压机	4003	空压相	at.			
序号	日期时间	班别	电能 示值 kWh	倍率/ 电度 kWh	电能 示值 kWh	倍率/ 电度 KWh	电能 示值 kWh	倍率/ 电度 kWh	电能 示值 KWh	倍率/ 电度	电能示值	倍率/ 电度 kWh	电能 示值 kWh	倍率/ 电度 kWh	电能 示值	倍率/ 电度 kWh	电能 示值	倍率/ 电度	电能 示值 kWh	倍率/ 电度 kWh	当班 总电度	当班 产量	单电
0	2018-09-01 23:30:00	期初	18501.76	100	18709.07	100	22294.85	60	1953.24	kWh 80	kWh 5326.25	100	16459.30	80	kWh 33649.66	80	kWh 27571.11	kWh 80	14548.61	20			<u> </u>
	2018-09-02 07:30:00	夜班		726.0	18709.07	100	222304.08	553.8	1963.66		5326.25	100	16459.30	00	33662.57	1032.8	27579.82	696.8	14549.30	13.8	3856.80		
	2018-09-02 15:30:00	早班		919.0	18709.08	1.0	22313.38		1973.92		5326.25		16459.81	40.8	33675.10		27591.70		14551.96		4345.60		
	2018-09-02 23:30:00	中班		917.0	18709.08		22322.59	552.6	1984.07		5326.25		16459.81	1010	33688.05	1036.0	27602.75		14552.43	9.4	4211.00		
	2018-09-03 07:30:00	夜班		927.0	18709.09	1.0	22331.89	558.0	1994.38	824.8	5326.25		16459.82	0.8	33700.91	1028.8	27611.99	739.2	14553.24	16.2	4095.80		
5	2018-09-03 15:30:00	早班	18545.81	916.0	18709.09		22341.13	554.4	2004.61	818.4	5326.25		16459.82		33712.81	952.0	27624.00	960.8	14558.64	108.0	4309.60		
6	2018-09-03 23:30:00	中班	18554.91	910.0	18709.09		22350.38	555.0	2014.84	818.4	5326.25		16459.83	0.8	33725.71	1032.0	27635.81	944.8	14559.71	21.4	4282.40		
7	2018-09-04 07:30:00	夜班	18564.09	918.0	18709.10	1.0	22359.65	556.2	2025.17	826.4	5326.25		16459.83		33738.60	1031.2	27643.06	580.0	14559.86	3.0	3915.80		
8	2018-09-04 15:30:00	早班	18573.03	894.0	18709.10		22368.92	556.2	2035.43	820.8	5326.25		16459.84	0.8	33751.56	1036.8	27654.83	941.6	14561.38	30.4	4280.60		
9	2018-09-04 23:30:00	中班	18582.18		18709.10		22378.18	555.6	2045.63	816.0	5326.25		16459.90	4.8	33764.39	1026.4	27665.58	860.0	14562.19	16.2	4194.00		
10	2018-09-05 07:30:00	夜班	18591.35	917.0	18709.11	1.0	22387.45	556.2	2055.90	821.6	5326.25		16459.91	0.8	33777.26	1029.6	27674.54	716.8	14563.14	19.0	4062.00		
	2018-09-05 15:30:00	早班	18599.65		18709.11		22396.66		2066.10			31.0	16460.92	80.8	33789.38	969.6	27686.79		14568.12		4359.60		
	2018-09-05 23:30:00	中班		922.0	18709.12	1.0	22405.93	556.2	2076.36	820.8	5326.56		16464.22	264.0	33802.19	1024.8	27698.57	942.4	14568.96	16.8	4548.00		
	2018-09-06 07:30:00	夜班	18618.18	931.0	18709.12		22415.24	558.6	2086.77	832.8	5326.56		16464.23	0.8	33814.59	992.0	27702.02	276.0	14569.94	19.6	3610.80		
	2018-09-06 15:30:00	早班		937.0	18709.13	1.0	22424.67		2097.28				16464.23		33827.30	1016.8	27712.39		14571.93		4230.80		
	2018-09-06 23:30:00	中班			18709.13		22434.12						16464.24	0.8	33840.39		27721.94		14572.06	2.6	4161.60		
16	2018-09-07 07:30:00	夜班	18646.27	932.0	18709.14	1.0	22443.60	568.8	2118.39	848.8	5326.56		16464.24		33853.23	1027.2	27727.12	414.4	14572.30	4.8	3797.00		

Figure 12.10 Statistical Report on Electricity Consumption of Air Compressors in the Whole Plant

0 2012000123300 0	_ 6	(/														da -	成备1.pu	圣头煤 磨	BigData∖i	DA水泥」一周氨酯\B	//IE/P
BIT FREX_BEA V REX REX<																					帮助(H)	计算(Z
Physical PhysicaPhysicaPhysicaPhysical Physical Physical Physical Physical Phys	磨↓	窑头煤雕	电量月报表	¥磨用	生料	计表	料电能统	表刻	电能统计	水泥磨	供电表	季水泵外	水泥雕	搅拌站	見总和	总降分表	表	·2 总	磨设备	原料煤	空压机用电量	全厂
Find find <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th><u></u></th><th>余挑</th><th>i e</th><th>水道</th><th>浃</th><th>-</th><th>尾</th><th>8</th><th>щ</th><th>Ð,</th><th>麦压器</th><th>厂前区:</th><th></th><th></th><th></th></th<>								<u></u>	余挑	i e	水道	浃	-	尾	8	щ	Ð,	麦压器	厂前区:			
0 001202012020000 243500000 12000 9293.48 20000 972.58 20000 6352.71 10000 9695.06 20000 6675.07 929 40000 2 2018-09.07.3000 781 312.26 2000 972.56 35000 637.54 25000 699.05 63000.0 6675.61 2364.6 18300.6.0 3 2018-09.07.3000 791 312.6 2000 973.61 86000 639.54 23700.0 10000 6677.60 236.4 18300.6.0 4 2018-09.07.3000 791 312.6 2000 973.61 86400.0 639.54 23700.0 1000.0 6677.60 227.6 18475.60 447.20 5 2018-09.07.3000 791.81 312.6 8000.0 673.61 250.00 10000.0 667.61 227.2 1847.50 447.20 5 2018-09.04.73.0000 791.81 63000.0 639.62 220.00 1000.0 6667.3 227.2 1847.50 447.20						当班 产量														班别	日期时间	序号
1 1010-0962 07/3000 178/H 312.6 320.0 2964.74 22000.0 9975.74 22010.0 9905.6 6800.0 6877.40 2478.0 149967.80 2 2016-09.0223.300.0 9HH 312.63 3800.0 677.64 22010.0 9607.66 4300.0 677.60 227.66 14306.40 2 2016-09.0223.300.0 9HH 312.63 3800.0 677.61 227.60 1897.56 227.6 1875.56 14306.40 2 2016-09.073.00 FHH 312.65 5800.0 677.61 227.6 1875.56 14306.40 3 2016-09.073.00 FHH 312.65 5800.0 277.61 1875.56 227.2 1897.54 220.00 6 016-09.073.00 FHH 313.05 5800.0 277.61 1877.66 2800.0 1000.16 6864.08 228.29 1774.2.90 6 016-09.04.73.00 FHH 313.95 2800.0 3002.07 70000.0 6867.8 228.58 1077.54 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>kWh</th><th></th><th>kWh</th><th>kWh</th><th>kWh</th><th></th><th></th><th></th><th>kWh</th><th></th><th></th><th></th><th></th><th></th><th>_</th></td<>								kWh		kWh	kWh	kWh				kWh						_
2 018-09-02 15 3000 FHI 312.43 3400 2985.74 2000.0 673.86 6600.0 6394.91 2270.0 1000.56 7600.0 6671.6 266.4 1300.640 3 2018-09-02 15 300.0 FHI 312.65 3000.0 873.86 66400.0 6394.53 22300.0 10006.13 71000.0 6677.65 2276.6 18300.640 4 018-09-02 330.00 FHI 312.65 3000.0 873.86 66400.0 6394.63 2230.00 1000.613 71000.0 6667.65 227.9 18047.20 5 018-09-03 330.00 FHI 312.55 300.00 24 7000.0 6394.63 2230.00 10016.70 7660.0 6684.00 227.2 18047.20 160.00 160.00 160.00 160.00 160.00 160.00 174.16 300.00 690.00 6684.00 6684.00 227.9 17404.20 160.00 160.00 160.00 1668.00 160.00 160.00 160.00 160.00 160.00 160.00 1																						
3 019-09-02 23:000 9HE 312.62 3090.2 2080.00 673.18 6640.00 632.20 230.00 1000.00 677.80 227.36 1897.56.0 4 2018-09-03.700.00 9HE 312.62 5090.2 2080.00 633.63 220.00 1000.00 667.80 227.36 1897.56.0 5 2018-09-03.750.00 9HE 312.63 6500.2 298.90 273.61 6300.00 633.65 220.00 1000.00 6680.00 268.24 228.29 1774.29 6 2108-09-03.753.00 9HE 31.35 800.00 671.16 5700.00 638.65 220.00 1001.77 7200.00 684.94 24.85 1072.58 7 2108-09-04.730.00 9HE 31.36 800.00 671.01 5700.00 639.00 1000.00 6687.45 1072.58 1000.00 6687.45 1072.58 1000.00 6687.45 1072.58 1000.00 6687.45 1072.58 1000.00 6687.45 1072.58 1000.00 1000																						
4 2018-09-03 07:300 ### 312.78 320.0 998.02 2080.0 873.516 6650.00 6394.63 2200.0 1001317 71200.0 6662.46 222.2 1908.47.20 5 018-09-03 07:3000 ### 313.06 600.0 298.89 17400.0 873.51 6300.00 6394.65 2200.0 1001317 71200.0 6662.46 222.9 17742.90 6 018-09-03 23000 ### 313.25 800.00 227.21 1808.00 6662.48 227.24 181.28.60 7 018-09-04 07.3000 ### 313.66 400.0 874.91 8300.0 640.75 2300.0 10667.76 7068.0 6684.89 271.79 1874.87 8 2018-09-04 07.3000 ### 313.69 400.0 875.47 6600.0 640.07 2300.0 1000.07.72 7400.0 6684.89 271.79 1874.97 6600.0 9 2018-09-04 07.3000 ### 313.09 400.0 875.57 6600.0 640.07																						
5 0018-09-03 15 3000 94 13 06 660.0 298.88 17400.0 873.31 63000 6398.69 23000 1001670 686.46 262.91 17742.90 7 2018-09-03 2300.0 94 313.55 300.00 2014.00 6398.09 2018-00 6006.0 684.66 226.91 17744.290 7 2018-09-04.07.300.0 94 313.55 300.0 8741.66 7000.0 689.72 220.61 18128.60 8 2018-09-04.07.300.0 944 313.66 400.0 302.21 17200.0 874.89 53800.0 6400.75 1300.0 669.76 2016.6 1621.680 9 2018-09-04 23.300.0 944 313.66 400.0 305.02 6600.0 640.07 3220.0 10023.75 71000.0 668.17 21.79 1874.96 10 2018-09-04 23.300.0 944 2400.0 675.92 5600.0 640.07 3220.0 10023.75 7140.00 668.47 21.79 1874.96																						3
6 D18 09-03 23 3000 PHE 31 35 3800 3001 35 22200 874 31 63000 6401 50 26800 10002 00 6684 82 245 8 10072 80 7 2018-09-04 07 3000 #HE 31 39 200 3001 35 22200.0 8744 31 9300.0 6401 50 2580.0 10002 00 70000.0 6684 82 245 8 10072 80 2018 9404 530.00 4HE 31 39 240.0 3002 42 17000.0 6401 50 2580.0 1002 00 1002 37 5 17000.0 6687 32 127.6 1843.1 8000.0 6401 50 2500.0 1002 00 1002 37 5 17000.0 6689 32 127.9 1814 97.9 4 9 2018-09-06 730.00 #HE 31 405 3000.3 875.37 66000.0 6400 7 3200.0 10001 76 8000.0 6684 7 217.9 1814 79 4 10 2018-09-06 515 30:00 #HE 314 29 4000.0 875.37 66000.0 6410.0 23000.0 1004 36																						4
2 018-09-04 073000 ### 31.32 2020 610-13 6400 6410-56 23000 100007 65000 16007.30 76000 6697.76 2016 611288.60 9 2018-09-04 73000 ### 313.65 4000 974.69 58000 10007.30 76000 6697.76 2016 611288.60 9 2018-09-04 233000 ### 313.65 4000 975.02 6500.0 6407.67 20100 10003.75 710000 6699.79 217.9 187497.90 10 1018-09-05 073000 ### 314.29 4000.05 875.52 66000 6407.89 22010 10007.76 86000.06 6691.71 217.9 187497.90 10 2018-09-057.3000 ### 314.29 4000.557.57 65000 6400.6 217.00 10004.66 7190.1 1007.10 12 2018-09-057.3000 ### 314.49 800.057.9 877.00 6410.7 2200.0 1004.46 71400.0 6685.3 2190.1																						
8 2018-09-04 15 30:00 FHE 313.60 640.0 3002.21 17200.0 876.99 5360.00 6403.75 2190.00 1002.375 7100.00 6689.39 1976.60 166216.60 9 1016-09-04 23.3000 FHE 313.90 400.0 3750.77 6500.00 6403.75 2100.00 6689.39 1976.60 166216.60 160217.97 18137.90 10 2018-09-05.0730.00 FHE 314.05 300.03 7753.77 6500.00 6403.07 2300.00 10037.77 6700.00 66841.37 217.97 18137.90 11 2018-09-05.153.000 FHE 314.24 340.01 305.54 14700.01 875.87 6600.00 6413.01 2300.01 0034.36 7190.00 66863 219.11 18007.10 12 2018-09-05 67.330.00 FHE 314.49 340.00 307.67 6300.00 0640.00 6430.00 6430.00 10034.36 7100.00 66863 219.11 18003.10 13 2018-09-05 67.370.00							180725.80	2245.8	6684.88							27000.0	3000.24	380.0	313.25			6
9 016-03-04 023-030 0411 013-04 003-44 24600.0 8750.27 6500.0 6400.7 2320.0 10027.32 7400.0 6691.78 221.79 197497.90 10 2016-09-06.730.00 #14 314.05 300.0 4000.01 6403.02 2320.00 10027.07 6900.00 6694.17 217.9 197497.90 11 2016-09-05.730.00 #14 314.05 300.0 4075.57 6900.00 6403.49 2320.00 10027.6 6900.00 6894.17 217.9 197497.90 1007.10 12 2016-09-05.55.30.00 #11 314.05 300.0 3006.44 2600.00 6410.7 3230.00 10001.45 7160.00 6696.53 2190.1 1800.01.0 12 2016-09-06.73.00 #13 314.40 200.00 756.39 6400.00 6413.00 2330.00 1004.14 6840.00 6701.35 222.9 1580.00 1890.01 12 2016-09-06.730.00 #14.46 34.00 207.76							181288.60	2208.6	6687.26													7
10 2016-09-05 07:30:00 若班 314.05 300.0 300.47 20600.0 875.37 66000.0 6408.39 23200.0 10030.77 69000.0 6694.17 217.9 181317.90 4 11 2016-09-05 15:30:00 4FH 314.29 400.0 3005.34 17400.0 8755.82 45000.0 6413.02 23200.0 10037.93 7400.0 6608.43 1201.0107.010 4 3016.94.05 301.77 3200.0 10037.93 7400.0 6688.93 7401.1 8608.010 4 <t< td=""><td></td><th></th><td></td><td></td><td></td><td></td><td>166216.60</td><td>1976.6</td><td>6689.39</td><td>71000.0</td><td>10023.75</td><td>21900.0</td><td>6403.75</td><td>53600.0</td><td>8746.99</td><td>17200.0</td><td>3002.21</td><td>540.0</td><td>313.66</td><td></td><td></td><td>8</td></t<>							166216.60	1976.6	6689.39	71000.0	10023.75	21900.0	6403.75	53600.0	8746.99	17200.0	3002.21	540.0	313.66			8
11 2018-09-05 15:3000 単肥 314.29 480.0 3005.24 17400.0 875.82 4500.0 1601.71 2320.00 10037.93 71400.0 6666.33 219.01 160070.10 12 2018-09-05 23:30:00 ●11 314.46 340.0 306.64 26000.0 651.00 6413.08 2370.0 10037.93 71400.0 6696.89 219.1 188030.10 12 2018-09-06 07.300.0 ●11 314.59 200.07.79 2300.00 6641.00 6701.35 222.89 16404.29																						9
12 2018-09-05 23.30.00 中野 314.46 340.0 3006.64 26000.0 8759.04 6443.08 23700.0 1007.93 71400.0 6698.69 219.1 18603.010 4 4 32 2018-09-06 07.30.00 表玩服 310.7.2 32000.0 6413.48 23300.0 1001.14.0 66400.0 6701.35 228.29 185042.90 4																						
13 2018-09-06 07:30:00 夜班 314.59 26.0 3007.79 23000.0 8762.38 66800.0 6415.41 23300.0 10041.40 69400.0 6701.35 2282.9 185042.90							160070.10										3005.34	480.0	314.29			
							188030.10	2190.1	6698.89	71400.0	10037.93											
14 2018-09-06 15:30:00 早班 314.72 260.0 3008.28 9800.0 8765.69 66200.0 6417.77 23600.0 10044.99 71800.0 6703.85 2320.0 173980.00							185042.90	2282.9	6701.35	69400.0	10041.40					23000.0	3007.79	260.0	314.59			
							173980.00	2320.0	6703.85	71800.0	10044.99						3008.28	260.0	314.72			
15 2018-09-06 23:30:00 中班 314.80 160.0 3008.77 9800.0 8769.00 66200.0 6420.09 23200.0 10048.54 71000.0 6706.34 2310.7 172670.70							172670.70	2310.7	6706.34	71000.0	10048.54	23200.0	6420.09	66200.0	8769.00	9800.0	3008.77	160.0	314.80) 中班	2018-09-06 23:30:00	15
16 2018-09-07 07:30:00 夜班 314.87 140.0 3009.73 19200.0 8772.29 65800.0 6422.42 23300.0 10051.98 68800.0 6708.87 2347.8 179587.80							179587.80	2347.8	6708.87	68800.0	10051.98	23300.0	6422.42	65800.0	8772.29	19200.0	3009.73	140.0	314.87) 夜班	2018-09-07 07:30:00	16

Figure 12.11 Summary Statistical Report of Total Score Reduction Table

全厂?	空压机用电量 厦	「料煤	磨设备2	总表	: 总	降分表	总和 搅	拌站 :	水泥磨水	泵外供□	电表 水	泥磨电	能统计	表 熟	料电能约	航计表	生料磨	用电量	月报表	窑头	煤磨┥	
			水泥 #支[水泥 #支日		1#廳主	电机	2#磨主	电机	1#磨損	凤机	2#磨打	凤机	1#磨辊	压机1	1#磨辊	压机2	2#磨辊	压机1	2# 磨棍 压	#1 .2
序号	日期时间	班别	电能 示值	倍率/ 电度	电能 示值	倍率/ 电度	电能 示值	倍率/ 电度	电能 示值	倍率/ 电度	电能 示值	倍率/ 电度	电能 示值	倍率/ 电度	电能 示值	倍率/ 电度	电能 示值	倍率/ 电度	电能 示值	倍率/ 电度	电能 示值	倍
			kWh	kWh	kWh	kWh	kWh	k₩h	kWh	kWh	kWh	kWh	kWh	kWh	kWh	kWh	kWh	k₩h	k₩ħ	kWh	kWh	K
	2018-09-01 23:30:00	期初	6652.80	2000	5455.15	2000	14352.92	4000	14438.02	4000	4333.20	2000	4524.33	2000	4112.64	2000	4105.82	2000	4028.88	2000	4527.24	_
	2018-09-02 07:30:00	夜班	6654.89	4180.0	5456.93	3560.0	14357.73	19240.0	14442.80	19120.0	4334.72	3040.0	4525.81	2960.0	4114.16	3040.0	4107.32	3000.0	4030.19	2620.0	4528.68	
	2018-09-02 15:30:00	早班	6657.11	4440.0	5458.80	3740.0	14362.54	19240.0	14447.55	19000.0	4336.22	3000.0	4527.29	2960.0	4115.61		4108.75	2860.0	4031.49	2600.0	4530.12	28
	2018-09-02 23:30:00	中班	6659.31	4400.0	5460.68	3760.0	14367.35	19240.0	14452.32	19080.0	4337.70	2960.0	4528.74	2900.0	4117.21	3200.0	4110.39	3280.0	4032.83	2680.0	4531.59	29
	2018-09-03 07:30:00	夜班	6661.47	4320.0	5462.46	3560.0	14372.15	19200.0	14457.09	19080.0	4339.19	2980.0	4530.20	202010	4118.89	3360.0	4112.11	3440.0	4034.08	2500.0	4533.01	28
	2018-09-03 15:30:00	早班	6663.68	4420.0	5464.30	3680.0	14376.95	19200.0	14461.87	19120.0	4340.69	3000.0	4531.65		4120.46	3140.0	4113.72	3220.0	4035.39	2620.0	4534.46	29
6	2018-09-03 23:30:00	中班	6665.89	4420.0	5466.18	3760.0	14381.75	19200.0	14466.64	19080.0	4342.19	3000.0	4533.11	2920.0	4121.98	3040.0	4115.23	3020.0	4036.70	2620.0	4535.92	
	2018-09-04 07:30:00	夜班	6667.99			3600.0		19240.0					4534.59		4123.65		4116.93		4037.95		4537.35	
	2018-09-04 15:30:00	早班	6670.22			3700.0		19400.0	14476.17	19080.0			4536.05		4125.16		4118.40		4039.27		4538.83	
-	2018-09-04 23:30:00	中班	6672.49		5471.77	3880.0	14396.29	19520.0	14480.93	19040.0	4346.77		4537.50		4126.71		4119.89	2980.0	4040.62		4540.30	
	2018-09-05 07:30:00	夜班	6674.73			3900.0		19560.0	14485.69	19040.0	4348.36		4538.97		4127.97		4121.08		4041.96		4541.78	29
	2018-09-05 15:30:00	早班	6676.99	4520.0	5475.69	3940.0	14406.02	19360.0	14490.46	19080.0	4349.89	3060.0	4540.43	2920.0	4129.49		4122.57	2980.0	4043.31	2700.0	4543.26	29
	2018-09-05 23:30:00	中班	6679.31	4640.0	5477.53	3680.0	14410.82	19200.0	14495.21	19000.0	4351.40	3020.0	4541.90	2940.0	4131.06	3140.0	4124.12	3100.0	4044.67	2720.0	4544.78	30
13	2018-09-06 07:30:00	夜班	6681.26	3900.0	5479.29	3520.0	14415.67	19400.0	14499.98	19080.0	4352.94	3080.0	4543.39	2980.0	4132.65	3180.0	4125.68	3120.0	4046.02	2700.0	4546.30	30
	2018-09-06 15:30:00	早班	6683.53	4540.0	5481.03	3480.0	14420.50	19320.0	14504.75	19080.0	4354.49	3100.0	4544.92	3060.0	4134.34		4127.35	3340.0	4047.33	2620.0	4547.77	29
15	2018-09-06 23:30:00	中班	6685.80	4540.0	5482.74	3420.0	14425.31	19240.0	14509.51	19040.0	4356.06	3140.0	4546.45	3060.0	4135.92	3160.0	4128.91	3120.0	4048.64	2620.0	4549.24	29
16	2018-09-07 07:30:00	夜班	6687.95	4300.0	5484.42	3360.0	14430.13	19280.0	14514.29	19120.0	4357.65	3180.0	4548.00	3100.0	4137.40	2960.0	4130.37	2920.0	4049.94	2600.0	4550.71	29

Figure 12.12 Statistical Table of Electric Energy of Cement Mill

	DA水泥厂一周数据\Big	gData\	窑头煤磨。	¢ã1.po	a -														i <u></u>	_ 8
·箕(Z)	• 帮助(H)																			
亰料	煤磨设备2 总表	Ē	总降分	表总和	搅拌	站	水泥磨力	K泵外	供电表	水液	医磨电能	统计社	長 熟料	电能约	充计表	生料	磨用『	电量月	报表 窑头煤磨设备1	•
			180	05	66200	6屏2	66206	屛1	2705V	s.w	27'	19	黄沙石	皮碎						
序号	日期时间	班别	示值	倍率/ 电度	示值	倍率/ 电度	示值	倍率/ 电度	示值	倍率/ 电度	电能 示值	倍率/ 电度	电能 示值	倍率/ 电度	当班 总电度	当班 产量		操作工		
			kWh	kWh	kWh	kWh	kWh	kWh	kWh	kWh	kWh	kWh	kWh	kWh						
0	2018-09-01 23:30:00	期初			903.44	40	5808.33	40	2986.93	40	6808.81	80	3683.40							
1	2018-09-02 07:30:00	夜班			903.65	8.4	5810.05		2987.94		6816.73									
	2018-09-02 15:30:00	早班			903.88	9.2	5811.98						3687.12							
	2018-09-02 23:30:00	中班			904.10	8.8	5813.99		2990.38				3688.21	130.8	936.00					
	2018-09-03 07:30:00	夜班			904.31	8.4	5815.73		2991.41				3688.91	84.0	878.00					
	2018-09-03 15:30:00	早班			904.53	8.8	5817.64	76.4	2992.56				3690.05		936.20					
6	2018-09-03 23:30:00	中班			904.76	9.2	5819.49	1 110	2993.67				3692.55							
7	2018-09-04 07:30:00	夜班			904.99	9.2	5821.52		2994.91				3693.54		926.00					
	2018-09-04 15:30:00	早班			905.20	8.4	5823.27	70.0	2995.94	41.2			3695.02	177.6	932.80					
	2018-09-04 23:30:00	中班	2791.70	17.6	905.43	9.2	5825.10	73.2	2997.04	44.0	6881.31		3698.41	406.8	1198.00					
10	2018-09-05 07:30:00	夜班	2792.63	18.6	905.65	8.8	5826.97	74.8	2998.17	45.2	6889.45	651.2	3698.49	9.6	808.20					
11	2018-09-05 15:30:00	早班	2793.52	17.8	905.88	9.2	5828.90	77.2	2999.32	46.0	6897.60	652.0	3699.99	180.0	982.20					
12	2018-09-05 23:30:00	中班	2794.43	18.2	906.12	9.6	5830.83	77.2	3000.48	46.4	6905.79	655.2	3702.31	278.4	1085.00					
13	2018-09-06 07:30:00	夜班	2795.42	19.8	906.35	9.2	5832.77	77.6	3001.63	46.0	6914.12	666.4	3702.84	63.6	882.60					
14	2018-09-06 15:30:00	早班	2796.68	25.2	906.60	10.0	5834.82	82.0	3002.80	46.8	6922.47	668.0	3703.32	57.6	889.60					
15	2018-09-06 23:30:00	中班	2797.71	20.6	906.83	9.2	5836.79	78.8	3003.91	44.4	6930.88	672.8	3704.49	140.4	966.20					
16	2018-09-07 07:30:00	夜班	2798.66	19.0	907.07	9.6	5838.76	78.8	3005.04	45.2	6939.38	680.0	3705.04	66.0	898.60					

Figure 12.13 Electric Energy Statistics Report of Kiln Head Coal Mill Equipment 1

The Acuvim II series three-phase network power instruments jointly developed by Beijing Aibo Precision Electric Co., Ltd. have relatively complete functions: full parameter measurement, bidirectional four quadrant 0.2S level electricity metering; The power quality event recording and waveform recording functions provide technical basis for accident recall; RS485, PROFIBUS, Ethernet, support for web browsing, scheduled email sending, ModbusTcp; Provide full parameter timed recording function; Real measurement of communication refresh per cycle, suitable for occasions with high response speed requirements.

Figure 12.14 A Full Parameter Energy Meter

12.8 A railway data teletransmission system

The control system of a certain railway station is S7-200smart, and the railway bureau needs to collect signals from it, but only supports the ModbusTcp protocol. The ModbusTcp protocol of S7-200smart is relatively troublesome. PDAServer communicates with PLC through the S7 protocol, and the collected real-time data is mapped to the Modbus register. The railway bureau can communicate with ModbusTcpServer, and the following figure is a schematic diagram of a railway data remote transmission system.

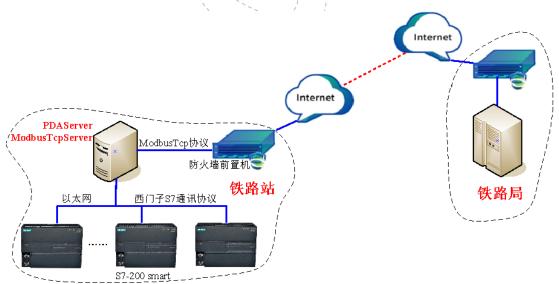


Figure 12.15 Schematic diagram of PDA data remote transmission network for a certain railway station

12.9 A data collection and statistics system for operation time of a certain machine set

The below figure is a operation time statistics report of a certain machine set, daily, monthly and team reports may be automatically generated.

🛷 报表																		_ 8 >	<	
2017年5月	1																			
星期日星期一星期二星期三月		_	日报	月报																
30 1 2 3	4 5	6	L																	
7 8 9 10		13 20	日班报	月班报																
21 22 23 24		27																		
28 29 30 31			保存																	
(二)今天: 2017-5-14					0017	05-14	口他主													
时间 8402	1203	8302	L103	L303	2017-	L504K	L504K	时间及采	7+675	B402	1,203	B302	L103	1,303	L404	L504K	L604K	-	-	
83101 D402	1203	5302	1105	Lous	1404	LOUAR	TPOAV		(1+1) 13 23:00:0		0.000	0.000	0.000	0.000	0.000	0.000	0.000			
2017.05.14 00:00:00 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		14 00:00:0		0.000	0.000	0.000	0.000	0.000	0.000	0.000			
2017.05.14 01:00:00 0.000							0.000											_		_ 0 ×
2017.05.14 02:00:00 0.000	20 JR 4K				_															
2017.05.14 03:00:00 0.000	•	2017		Þ		- 1 67														
2017.05.14 04:00:00 0.000	星期日星期一人	副二 星界	明三星期四星	副五 星期六	日	K	月报													
2017.05.14 05:00:00 0.000	30 1		3 4 10 11	5 6 12 13																
2017.05.14 06:00:00 0.000			17 18	19 20	日現	E报│	班报													
2017.05.14 07:00:00 0.000			24 25	26 27																
2017.05.14 08:00:00 0.000		30 3	7 9		保?	17														
2017.05.14 09:00:00 0.000		017-5-14	i č					2017-05	月报表											
2017.05.14 10:00:00 0.000	日期	B402	1203	8320	L103	L303	L404	L504K	L604K	时间及采礼	羊伯	B402	L203	B302	L103	L303	L404	L504K	L604K	•
2017.05.14 11:00:00 0.000		0.000	0.000		0.000	0.000	0.000	0.000	0.000		1 00:00:00		0.000	0.000	0.000	0.000	0.000	0.000	0.000	-
2017.05.14 12:00:00 0.000	2017.05.02	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		2 00:00:00		0.000	0.000	0.000	0.000	0.000	0.000	0.000	
2017.05.14 13:00:00 0.000	2017.05.03	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		3 00:00:00		0.000	0.000	0.000	0.000	0.000	0.000	0.000	
2017.05.14 14:00:00 0.000	2017.05.04	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	2017.05.0	4 00:00:00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
2017.05.14 15:00:00 0.000 2017.05.14 16:00:00 0.000	2017.05.05	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	2017.05.0	5 00:00:00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
2017.05.14 16:00:00 0.000	2017.05.06	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	2017.05.0	6 00:00:00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
2017.05.14 18:00:00 0.000	2017.05.07	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	2017.05.0	7 00:00:00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
2017.05.14 19:00:00 0.000	2017.05.08	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	2017.05.0	8 00:00:00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
2017.05.14 20:00:00 0.000	2017.05.09	0.000	0.000		0.000	0.000	0.000	0.000	0.000		9 00:00:00		0.000	0.000	0.000	0.000	0.000	0.000	0.000	
2017.05.14 21:00:00 0.000	2017.05.10	0.000	0.000		0.000	0.000	0.000	0.000	0.000		0 00:00:00		0.000	0.000	0.000	0.000	0.000	0.000	0.000	
2017.05.14 22:00:00 0.000	2017.05.11	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		1 00:00:00		0.000	0.000	0.000	0.000	0.000	0.000	0.000	
2017.05.14 23:00:00 0.000	2017.05.12	0.000	0.000		0.000	0.000	0.000	0.000	0.000		2 00:00:00		0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	2017.05.13	0.000	0.000		0.000	0.000	0.000	0.000	0.000		3 00:00:00		0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	2017.05.14	0.000	0.000		0.000	0.000	0.000	0.000	0.000		4 00:00:00		0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	2017.05.15 2017.05.16	0.000	0.000		0.000	0.000	0.000	0.000	0.000		5 00:00:00 6 00:00:00		0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	2017.05.16 2017.05.17	0.000	0.000		0.000	0.000	0.000	0.000	0.000		6 00:00:00 7 00:00:00		0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	2017.05.11	0.000	0.000		0.000	0.000	0.000	0.000	0.000		8 00:00:00		0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	2017.05.19	0.000	0.000		0.000	0.000	0.000	0.000	0.000		9 00:00:00		0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	2017.05.20	0.000	0.000		0.000	0.000	0.000	0.000	0.000		0 00:00:00		0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	2017.05.21	0.000	0.000		0.000	0.000	0.000	0.000	0.000		1 00:00:00		0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	2017.05.22	0.000	0.000		0.000	0.000	0.000	0.000	0.000		2 00:00:00		0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	2017.05.23	0.000	0.000		0.000	0.000	0.000	0.000	0.000		3 00:00:00		0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	2017.05.24	0.000	0.000		0.000	0.000	0.000	0.000	0.000		4 00:00:00		0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	2017.05.25	0.000	0.000		0.000	0.000	0.000	0.000	0.000		5 00:00:00		0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	2017.05.26	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	2017.05.2	6 00:00:00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	2017.05.27	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	2017.05.2	7 00:00:00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	2017.05.28	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	2017.05.2	8 00:00:00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	2017.05.29	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	2017.05.2	9 00:00:00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	2017 05 30	0 000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	2017 05 3	0.00.00.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	

Figure 12.16 Daily and monthly operation time reports of a certain machine set

🛷 报表								í í							_ 6	×	
2017	∓5月 ▶																
星期日星期一星期二星期		日报	月报														
<u> 里朝口 里朝一 里朝</u> 30 1 2		H #K	71 10														
7 8 9 1	0 11 12 13	日班报	月班报														
C 15 16 1		口观探	/J RITE														
21 22 23 2 28 29 30 3		(marter															
4 5 6	8 9 10	保存															
2017-5-14				2017-05-1	4 班报表												
班别 B402 L203	B302 L103	L303	L404 L504	K L604K	时间及采祥	直 B402	L203	B302	L103	L303	L404	L504K	L604K			-	
白班 0.000 0.000	0.000 0.000	0.000	0.000 0.00	0.000	2017.05.14	08:00:00 0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000				
夜班 0.000 0.000		0.000	0.000 0.00	0.000		20:00:00 0.00		0.000	0.000	0.000	0.000	0.000	0.000				
					2017 05 15	08:00:00 0.00	0.000		0.000	0.010	0.000	0.000	0.010				
	─────────────────────────────────────																_ 8 ×
	2017	年5月	•														
	星期日星期一星期二星期	明三星期四星期	朝五 星期六	日报	月报												
			5 6														
			2 13	日班报	月班报												
			19 20 26 27														
	28 29 30 3		2 3	保存													
	4 5 6			PR 11													
	──今天: 2017-5-14	۱			21	017-05 月班	振表										
	斑别 B402	L203	B302	L103 L30	3 L404	L504K 1	.604K 🕅	间及采样值	B402	L203	B302	L103	L303	L404	L504K	L604K	<u>*</u>
	2017-05-01 白斑 0.00	0.000	0.000	0.000 0.0	0.000	0.000	0.000 20	17.05.01 08:	00:00 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	夜班 0.00	0.000	0.000	0.000 0.0	0.000	0.000	. 000 20	17.05.01 20	00:00 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	2017-05-02 白斑 0.00	0.000	0.000	0.000 0.0	0.000	0.000 0	000 20	17.05.02 08:	00:00 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	夜斑 0.00	0.000	0.000	0.000 0.0	0.000	0.000	0.000 20	17.05.02 20:	00:00 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	2017-05-03 白斑 0.00	0.000	0.000	0.000 0.0	0.000	0.000	. 000 20	17.05.03 08	00:00 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	夜班 0.00	0.000	0.000	0.000 0.0	0.000	0.000 0	0.000 20	17.05.03 20:	00:00 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	2017-05-04 白斑 0.00	0.000		0.000 0.0		0.000	0.000 20	17.05.04 08:	00:00 0.000		0.000	0.000	0.000	0.000	0.000	0.000	
	夜班 0.00	0.000	0.000	0.000 0.0	0.000	0.000	. 000 20	17.05.04 20:	00:00 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	2017-05-05 白斑 0.00	0.000		0.000 0.0	0.000	0.000 0	0.000 20	17.05.05 08:	00:00 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	夜班 0.00	0.000	0.000	0.000 0.0	0.000	0.000	. 000 20	17.05.05 20:	00:00 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	2017-05-06 白斑 0.00	0.000	0.000	0.000 0.0	0.000	0.000	. 000 20	17.05.06 08:	00:00 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	夜班 0.00	0.000	0.000	0.000 0.0	0.000	0.000 0	. 000 20	17.05.06 20:	00:00 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	2017-05-07 白斑 0.00	0.000	0.000	0.000 0.0	0.000	0.000	. 000 20	17.05.07 08:	00:00 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	夜斑 0.00	0.000	0.000	0.000 0.0	0.000	0.000	000 20	17.05.07 20:	00:00 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	2017-05-08 白斑 0.00	0.000		0.000 0.0			0.000 20	17.05.08 08	00:00 0.000		0.000	0.000	0.000	0.000	0.000	0.000	
	夜班 0.00	0.000	0.000	0.000 0.0	0.000	0.000	. 000 20	17.05.08 20:	00:00 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	2017-05-09 白斑 0.00			0.000 0.0			. 000 20	17.05.09 08:	00:00 0.000		0.000	0.000	0.000	0.000	0.000	0.000	
	夜班 0.00	0.000	0.000	0.000 0.0	0.000 0.000	0.000	. 000 20	17.05.09 20	00:00 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	2017-05-10 白班 0.00	0.000	0.000	0.000 0.0	0.000	0.000	. 000 20	17.05.10 08:	00:00 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	夜班 0.00	0.000	0.000	0.000 0.0	0.000	0.000	. 000 20	17.05.10 20:	00:00 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	2017-05-11 白斑 0.00	0.000	0.000	0.00 0.0	0.000 0.000	0.000	. 000 20	17.05.11 08:	00:00 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	夜班 0.00	0.000	0.000	0.000 0.0	0.000	0.000	. 000 20	17.05.11 20:	00:00 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	2017-05-12 白斑 0.00	0.000	0.000	0.000 0.0	0.000 0.000	0.000	. 000 20	17.05.12 08:	00:00 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	夜艇 0.00	0.000	0.000	0.00 0.0	0.000 0.000	0.000	. 000 20	17.05.12 20	00:00 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	2017-05-13 白班 0.00	0.000	0.000	0.000 0.0	0.000 0.000	0.000 0	. 000 20	17.05.13 08	00:00 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	夜班 0.00	0.000	0.000	0.000 0.0	0.000 0.000	0.000	. 000 20	17.05.13 20:	00:00 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	2017-05-14 白斑 0.00	0.000	0.000	0.000 0.0	0.000	0.000	. 000 20	17.05.14 08:	00:00 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	夜班 0.00	0.000	0.000	0.000 0.0	0.000	0.000	. 000 20	17.05.14 20:	00:00 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
			0.000	0.000 0.0	0.000	0.000	. 000 20	17.05.15.08:	00.00 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	2017-05-15 白斑 0.000	0.000	0.000	0.000 0.0	0.000												
	2017-05-15 白班 0.00			0.000 0.0				17.05.15 20:			0.000	0.000		0.000	0.000	0.000	-

Figure 12.17 Daily and monthly team operation time report of a certain machine set

12.10 Dynamic running record report and meter reading system

Reports are automatically generated according to the analysis policy files(.pda) in \BigData, the default record time interval is one second. Counting accumulative values(I=1 in Config.csv) by minute or the average value(I=2) of the accumulative value or instantaneous value(I<>1 or 2), a value is calculated per hour. Only instantaneous value is calculated for bool and string.

		record																															
alculte	He	p													_																		
		2	018年	6月			Þ				rate re			-		temp\ temp\							-		~最.			-	- 14	产量。	<u>^</u>	中班 本班产量:	
明日月	目期一	- 星期::	星期	三星期	四星	明五月	副前六			Dayru	anning	raw re	cord							c.pua Untitle:	ehnik								运行	产量: 时间:8			
27	28	29	30			1	2		Da	ay run	ning	static	report	t 🛛 🛱	13	tempί	3123c	۱rep 8	1230	k泥磨	中控运	行记录							交接				
3	4	5 12	6			8	9		_	· ·					- 13							记录.			己事:				斑内	记事:		班内记事:	
10 17	11 18		13 20			22	16 23		Mor	nth ru	inning	i stati	c repo	rt 🗡		temply	31230	\rep 8	12308	求磨机	永統 征	「录.pd と运行し	a +≖										
24	25	26	27			29	30		Yea	ar rur	nning	static	repor	t 🗀						80円米: 客炉系:			5¥										
			- 4						-						- [-				1201	un 140	~	e para	-										
	今天:	2018-	7-1								班内讨	己爭			•								•					-	1		Ψ.		
		2	1	Unti	tled	水	泥磨	中	控运	行	记录	煤	磨系	统中	控诉	录:	球磨	机系	统	己录	破	碎系	统中	控运	行记	录	窑炉	系统订	录				
			-		E.	· · · ·	T		-					流	-										压								
					N I	7 1								36											:UK								
No.		Date]	lime		电	电	电	T	电	电压	电压	电	电	电	电	电	电	电	电压	电压	电	电	电	电	电	电	电	电	电				
					压 1	压2	压 21		压 22	压 23	压 24	压 25	压 26	压 27	压 28	压 29	压 30	压 31	压 32	上 3	压 4	压 5	压 6	压7	压 8	压 9	压 10	压 11	压 18				
					r	1 C				23 °C	24 °C	25 °C	20 TC	12/ TC	20 °C	29 °C	-00 -00	31 TC	32 °C	r v	4 °C	5 TC	° C	Ċ	° C	°C	10 °C	rc	10 TC				
1	2018	3-06-19	00.00	1:00	<u> </u>	0	0	-	0	6	U	0	6	6	6	6	6	U	<u> </u>	0	0	0	U	C	0	U	6	6	6				
		3-06-19																															
		-06-19																															
		3-06-19																															
5	2018	-06-19	04:00	0:00																													
6	2018	3-06-19	05:00	00:00																													
		3-06-19																															
		3-06-19																															
		3-06-19				_		_																									
		3-06-19				-	_	_																									
		3-06-19 3-06-19				-	_	-					_																				
		3-06-19 3-06-19				-	_	+	_																								
		3-06-19				-		+																									
		-06-19				, and the second se							.																				
		3-06-19			27019	116	6 0	-	0	0	0	0	0	0	0	0	0	0	0	-254	138	-28	-364	-55	244	-238	-387	24149	0				
		3-06-19							0	0	0	0	0	0	0	0	0	0	0	2	-14	15	39					-1038	0				
18	2018	3-06-19	17:00	0:00	16640	-15	4 0		0	0	0	0	0	0	0	0	0	0	0	70	84	-133	40	-238	27	456	83	2737	0				
		8-06-19																															
		3-06-19																															
		3-06-19																															
		3-06-19																															
		3-06-19																															
24	2018	3-06-19	23:00	00:00																													

Figure 12.18 Dynamic operation record and meter reading system operation interface

12.11 A hot rolling mill main drive SL150

SL150 is Siemens' new generation high-power alternating current frequency main drive system, with core units of Simotion D445 (or D455) template and Sinamics CU320 template. The PDA system collects data through standard Ethernet and Profinet, with a data refresh cycle of 1ms.

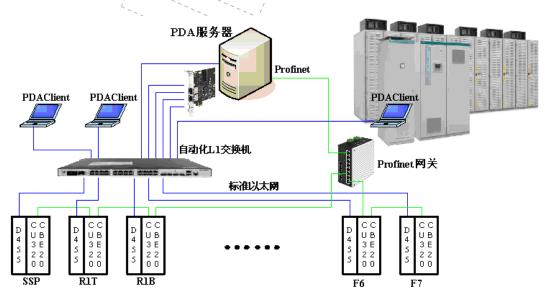


Figure 12.19 Main Drive Data Collection Network Diagram

12.12 Reforming of Data Acquisition System

Some special equipment, special communication network and special servers are used in some data acquisition systems. The system is very complex and expensive. Once it breaks down, it is very difficult to recover. The following figure is a transformative replacement of PDA system used in a steel plant.

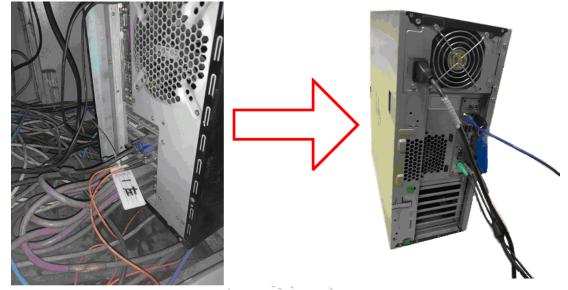


Figure 12.20 PDA System Transformation Host Network Diagram

12.13 Statistical Process Control

The purpose of SPC is to prevent, control and forestall.

The main functions of SPC are: real-time monitoring and early warning of the production process, timely taking measures for abnormal fluctuations, real-time improvement; judging whether the process fluctuations are random or abnormal fluctuations; realizing process stability and control.

SPC index is calculated for the data between x1 and x2 of the first curve in the current display area.

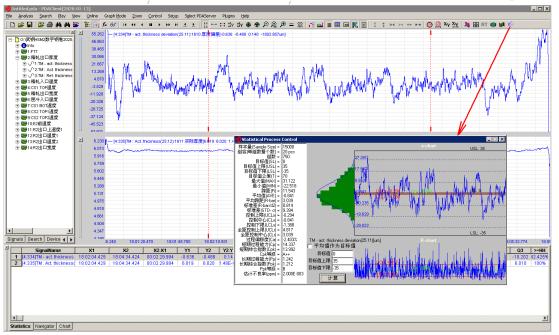


Figure 12.21 Statistical Process Control SPC Curve

12.14 Data Acquisition and Point Map Analysis System of a Brewery

Collect data from over 30 PLCs and electricity meters. The point maps include CO2 recovery and consumption, low-voltage electricity meters, high-voltage electricity meters, water volume, compressed air, steam, etc. Second-level data is promoted to SQL Server, millisecond level data is promoted to InfluxDB, and all tables are automatically created, with a structure consistent with the PDA system.

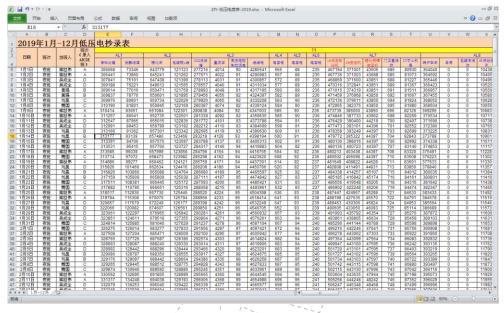


Figure 12.22 Energy consumption data collection for breweries

12.15 CO2 Recovery Prediction and Measurement Data Analysis System for a Beer Factory

Based on the mother liquor and fermentation tank data, the CO2 recovery curve can be predicted and compared with the real-time curve for analysis, achieving balanced and stable production of CO2 and beer.

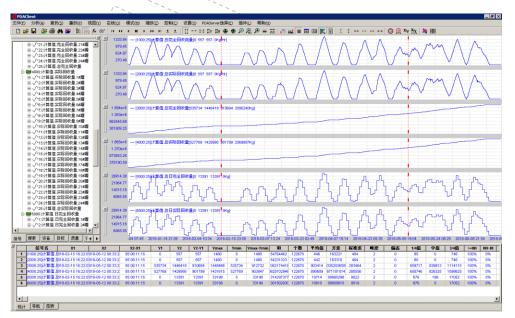


Figure 12.23 CO2 Recovery Prediction Curve

12.16 Unmanned locomotive and intelligent hot metal transportation system

Including driverless, uncoupling, parking anti slip, positioning, derailment detection, environmental awareness, equipment support, traffic scheduling, remote centralized control and other subsystems, any failure may cause catastrophic consequences.

The follow is locomotive operation.

Figure 12.24 Diagram of Molten Iron Transport Locomotive

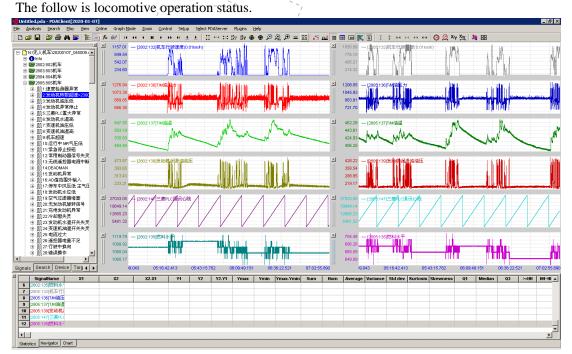


Figure 12.25 Data curve recorded by unmanned locomotives

12.17 All-weather unmanned wharf

It includes unmanned port machinery, steel coil automatic lifting, intelligent management and control of the terminal and other subsystems, which liberates the operators from the heavy and dangerous environment.

The follow is automatic lifting of steel coil at wharf.

Figure 12.26 All weather dock operation site

The follow is wireless signal strength and SNR of leaky wave cable.

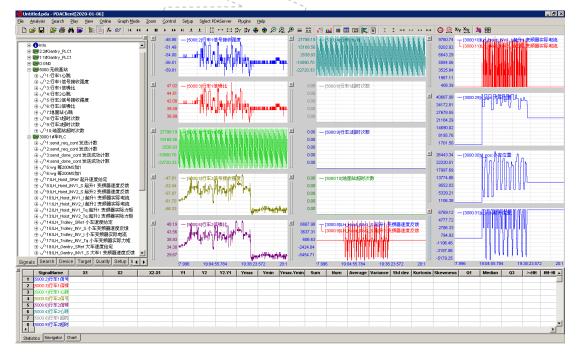


Figure 12.27 All weather dock PDA monitoring curve

12.18 Electro hydraulic servo control system

The servo motor drives the hydraulic cylinder for high-precision closed-loop control, Its positioning accuracy can reach um level, Servo valve and large-scale hydraulic station are cancelled, so the system has low cost, small maintenance and high reliability.

The follow is MS level data curve.

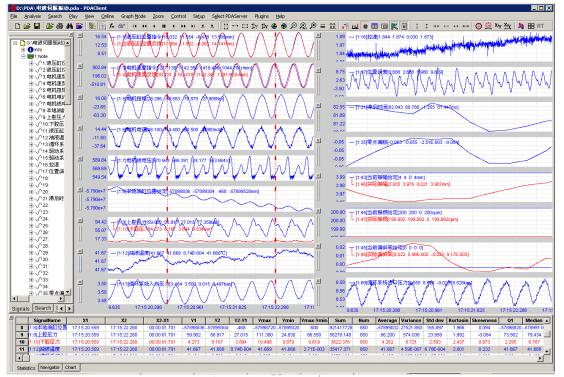
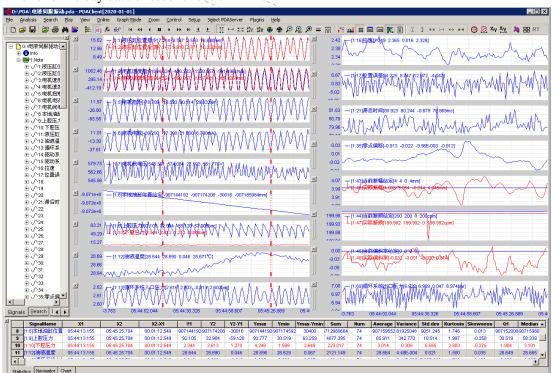



Figure 12.28 Millisecond level data curve of the electro-hydraulic servo control system

The follow is day data of second level.

Figure 12.29 Second-level Data Curve of Electro-hydraulic Servo Control System

12.19 Automobile monitoring system

The car is controlled by CAN bus. PDA supports standard frame and extended frame. It can collect all frame IDs at high speed. It is an effective tool for car monitoring, development and driverless debugging.

Figure 12.30 Various Cars Based on CAN Bus

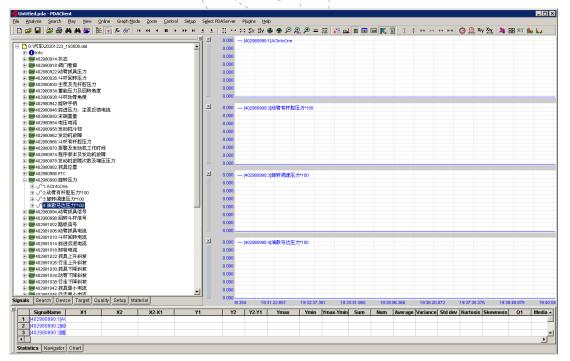


Figure 12.31 CAN Bus Data Collection for a Certain Car

12.20 Rolling mill stiffness tracking report

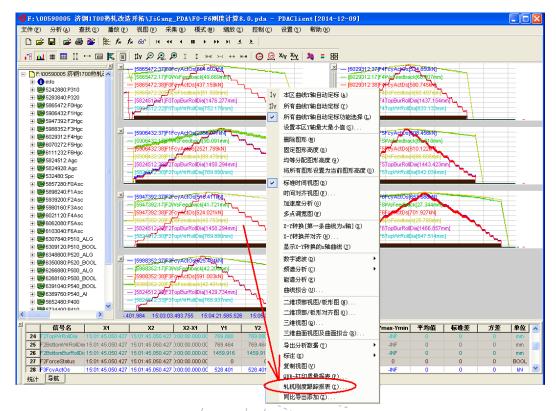


Figure 12.32 Measurement curve of rolling mill stiffness

	1	k			支撑辊	工作辊	í	3		0	x		r(相关)	系数 %)	δr	draff, mir feri	持续
	Os	Ds	δk	Σk	氟径	氟径	Os	Ds	δβ	Os	Ds	δDx	Os	Ds	(%)	起始时间	时间 (秒)
F0FcvActOs	2897	3120	-223	6017	1476.28	751.76	-199807	-220695	20889	68.968	70.731	-1.763	99.83	99.87	-0.04	2014-12-09	220
FUFCYACIUS	2097	3120	-225	6017	1472.24	752.18	-199007	-220095	20009	00.900	70.751	-1.765	99.65	99.07	-0.04	15:02:13	220
F1FcyActOs	2876	2705	171	5581	1464.06	717.51	-257045	-239904	-17140	89.375	88.690	0.686	98.42	99.71	-1.30	2014-12-09	239
TITCYACIOS	20/0	2105		5501	1473.84	716.83	-257045	-233304	-17140	05.575	00.050	0.000	30.4Z	55.71	-1.50	15:02:21	2.55
F2FcyActOs	3147	2981	166	6128	1458.29	769.88	-192236		-4031	61.083	63.141	-2.058	99.84	99.80	0.03	2014-12-09	205
121 CYACIOS	5147	2501	100	0120	1459.92	769.46	-152230	-188205	-4031	01.005	03.141	-2.050	35.04	35.00	0.05	15:02:28	203
F3FcvActOs	2911	3262	-351	6173	1429.73	768.94	-179012	-202080	23068	61.494	61.949	-0.455	99.93	99.82	0.12	2014-12-09	178
FSFCYACIOS	2911	3202	-351	61/3	1417.16	768.39	-179012	-202000	23000	01.494	01.949	-0.455	99.95	99.0Z	0.12	15:02:30	1/0
F4FcyActOs	3140	2948	192	6088	1437.15	633.13	-249283	-235218	-14065	79.379	79.787	-0.408	99.82	99.84	-0.03	2014-12-09	168
F4FCyACLOS	3140	2940	192	0000	1442.76	632.73	-249203	-235210	-14065	19.319	19.101	-0.400	99.0Z	99.04	-0.05	15:02:17	100
FFF	2704	2796	-93	5500	1443.42	642.03	-230845	-240990	10145	85.382	86.181	-0.799	99.51	99.61	-0.10	2014-12-09	162
F5FcyActOs	2/04	2/90	-93	5500	1432.57	641.81	-230845	-240990	10145	05.30Z	06.101	-0.799	99.51	99.61	-0.10	15:02:25	102
Effend at Oa	2195	20.77	-782	5173	1466.86	647.51	-102925	-135516	32592	46.883	45.519	1.364	99.56	99.36	0.20	2014-12-09	203
F6FcyActOs	2195	2977	-/02	51/3	1470.60	647.87	-102925	-130010	32392	40.003	45.519	1.304	99.00	99.30	0.20	15:02:25	203

PDA 高速数据采集及分析系统

第2页共2页

Figure 12.33 Linear fitting results of rolling mill stiffness

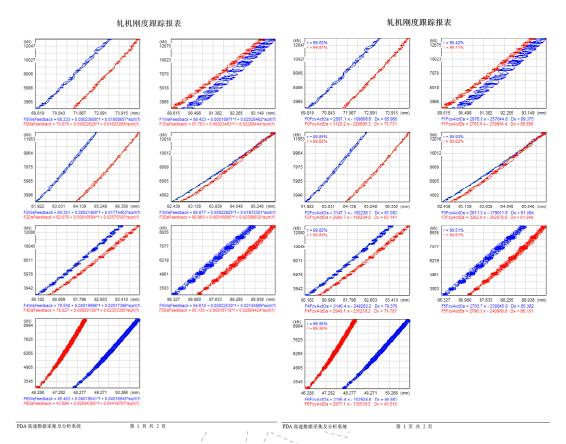


Figure 12.34 Original and fitted curves of rolling mill stiffness

						,		· .		1	1	-							
(单领 kN/mm	()kN	1000	2000	3000	4000	5000	6000	7000	8000	9000	10000	11000	12000	13000	14000	15000	報径 (mm)	起始时间	持结 时间 (秒
	Os	1905	2267	2475	2619	2727	2812	2882	2941	2992	3037	3076	3111	3143	3172	3198	1476.28		
F0F	Ds	2075	2458	2678	2828	2941	3030	3103	3164	3217	3263	3304	3340	3373	3403	3430	751.76	2014-12-09	22
F0FcyActOs	Σk	3980	4725	5153	5447	5667	5842	5985	6106	6209	6300	6380	6451	6516	6574	6628	752.18	15:02:13	22
	δk	-170	-191	-202	-209	-214	-218	-221	-223	-225	-226	-228	-229	-230	-231	-232	1472.24	1	1
	Os	1696	2117	2378	2567	2714	2833	2934	3021	3096	3163	3223	3277	3327	3372	3414	1464.06		
F1FcvActOs	Ds	1676	2038	2254	2405	2521	2614	2691	2757	2813	2863	2908	2947	2983	3016	3046	717.51	2014-12-09	2
FIFCYACIUS	Σk	3372	4155	4632	4972	5235	5448	5625	5777	5910	6026	6131	6225	6310	6388	6460	716.83	15:02:21	2.
	δk	20	79	124	161	193	219	243	264	283	300	316	330	343	356	367	1473.84	1	1
	Os	2020	2421	2655	2818	2941	3038	3119	3187	3245	3297	3342	3383	3420	3453	3484	1458.29	-	
F2FcvActOs	Ds	1686	2110	2375	2567	2717	2839	2942	3031	3109	3177	3239	3295	3346	3392	3435	769.88	2014-12-09	2
F2FCyActUs	Σk	3705	4532	5030	5385	5657	5878	6061	6218	6354	6474	6581	6678	6766	6846	6919	769.46	15:02:28	2
	δk	334	311	281	251	224	199	176	156	137	119	103	88	74	61	48	1459.92		1
	Os	1848	2223	2443	2596	2712	2805	2881	2945	3001	3050	3093	3132	3167	3199	3228	1429.73		
F2F	Ds	1830	2298	2591	2804	2971	3107	3222	3321	3408	3485	3554	3617	3674	3726	3775	768.94	2014-12-09	1
F3FcyActOs	Σk	3678	4521	5034	5400	5683	5912	6103	6267	6409	6535	6648	6749	6841	6925	7003	768.39	15:02:30	1
	ōk	18	-74	-147	-208	-259	-303	-341	-376	-407	-435	-461	-485	-507	-527	-547	1417.16	1	1
	Os	1927	2350	2603	2782	2919	3029	3120	3198	3265	3324	3377	3424	3467	3506	3542	1437.15		
F / F	Ds	1744	2153	2403	2581	2719	2830	2924	3003	3073	3134	3189	3238	3283	3324	3362	633.13	2014-12-09	1
F4FcyActOs	Σk	3671	4503	5006	5363	5638	5859	6044	6201	6338	6458	6566	6662	6750	6830	6904	632.73	15:02:17	1
	δk	183	197	201	201	200	198	196	194	192	190	188	186	184	182	180	1442.76	1	1
	Os	1771	2150	2374	2532	2652	2749	2829	2896	2955	3007	3053	3094	3131	3165	3196	1443.42		
	Ds	1613	2052	2333	2540	2705	2840	2955	3055	3143	3222	3292	3357	3415	3469	3520	642.03	2014-12-09	1
F5FcyActOs	Σk	3384	4201	4707	5072	5357	5589	5784	5952	6098	6228	6345	6450	6546	6634	6716	641.81	15:02:25	1
	δk	159	98	41	-8	-52	-92	-127	-159	-188	-215	-240	-263	-284	-305	-324	1432.57	1	1
	Os	1211	1564	1795	1969	2108	2224	2323	2410	2487	2556	2619	2676	2728	2777	2822	1466.86		
	Ds	1347	1859	2237	2544	2808	3040	3249	3440	3615	3779	3932	4075	4211	4340	4463	647.51		
F6FcvActOs –	Σk	2558	3423	4032	4513	4915	5264	5572	5850	6102	6335	6550	6751	6939	7117	7284	647.87	15:02:25	2
	δk	-135	-296	-441	-575	-700	-816	-926	-1030	-1129	-1223	-1313	-1400	-1483	-1563	-1641	1470.60	1	1
	Os																		
	Ds																	1	1
	Σk																	1	1
	ōk																	1	1

PDA高速数据采集及分析系统

Figure 12.35 Calculated stiffness under various rolling forces

第2页共2页

					精度评价表				
大类		LC系数a	LC系数b	LC系数c	PT系数a	PT系数b	PT系数c	刚度原始值]
1度	total	42.73	-543.9	993.9	36.68	-482.7	891.5		
数		22.95	-272.7	509.4	16.32	-242.4	482.6		
瞴	WS	19.78	-271.7	19.78	20.36	-239.6	408.8]
	分析	轧制力设定		度评价	PT刚唐				-LC = 993.9 - 543.9 F6-GAP + 42.73 F6-GAP**2
	22.01	POINT OCE	计算辊缝	LC计算刚度	计算辊罐	PT计算刚度	R-Sq = 99.99	6	
		2000	-1.639	651.14	-1.994	598.35		E FORCE LO DE	S = 509.4 - 272.7 F6-GAP-DS + 22.95 F6-GAP-D
	Total-Force/T	1500	-0.871	581.59	-1.159	533.31	R-Sq = 99.9		5 = 509.4 - 272.7 F0-0AP-D5 + 22.95 F0-0AP-L
	rotal-rotey r	1000	-0.011	502.33	-0.221	458.96		/=	· · · · · · · · · · · · · · · · · · ·
ilit:		500	0.984	N	0.868	X			S = 484.2 - 271.7 F6-GAP-WS + 19.78 F6-GAP-
1)度 十算		1000	-1.587	328.06	-1.893	290.13	R-Sq = 99.99	%	
₩	DC.	750	-0.825	290.84	-1.032	260.40	同時均合值日	6-TOTALEORCE	- -PT = 891.5 - 482.7 F6-GAP + 36.68 F6-GAP**2
	US	500	0.035	247.98	-0.071	226.74	R-Sq = 99.99		
		250	1.043	N .	1.031	X	-	Same a	
		1000	-2.967	375.92	-2.095	308.39			S = 482.6 - 242.4 F6-GAP-DS + 16.32 F6-GAP-D
		750	-2.302	348.58	-1.284	273.26	R-Sq = 99.9	70	
	ws	500	-1.585	318.88	-0.369	232.76	回归拟合值 Fi	6-FORCE-PT-WS	S = 408.8 - 239.6 F6-GAP-WS + 20.36 F6-GAP-
		250	-0.801	N	0.705	N	R-Sq = 99.99	6	
		保持	率评价	、 对向刚圆	建差评价	同向刚	度差评价	1	
				LC刚度(DS-WS)	PT刚度(DS-WS)				1
	刚度评价	LC原始刚度	LC刚度保持率		/AVE(PT:DS+WS)	DS:(LC-PT)/LC	WS:(LC-PT)/LC		
平价	压力段1000			-13.60%	-6.10%	11.561%	17.96%	南级±5%	-
鞅	压力段750	660.47	106.6%	-18.06%	-4.82%	10.466%	21.61%	普通±10%	-
	压力段500	1		-25.02%	-2.62%	8.565%	27.01%	an ran in 1011	
	12030000	現錄设定	对应压力	压力偏差	500吨时银雄差	零调偏差	撞调量		
	DS-Gap	0	509.4					偏差±2mm	-
	WS-Gap	0	19.78	185.05%	1.619	-2.315	0.352	構造量±0.3mm	-
		-		轧制力实际(-					1
	模型预报	轧制力预报	1115	0.5s+0.5s)	1133.000	预报精度	1.61%	±5%	
尾调		DS-LC	WS-LC	Total-LC	DS-PT	WS-PT	Total-PT		1
邗价		500.9	500.9	1001.8	468.900	413.7	882.6		1
鞅		DS (LC-PT)	WS (LC-PT)	Total (LC-PT)	LC (DS-WS)	PT (DS-WS)	00210	±10%	1
	零调过程中的力	32	87.2	119.2	0.000	55.2		±10%	-
	及偏差分析	Total (LC-PT)		WS (LC-PT) /WS-		PT (DS-WS)		L 108	1
		/Total-LC	LC	IC	/aveLC:DS+WS	/aveP:DS+WS	1		
		11.90%	6.39%	17.41%	0.00%	12.51%			4
		DS-LC	WS-LC	Total-LC	DS-PT	WS-PT	Total-PT		4
		569.7	574	1142.700	402.7	471.7	965.4		4
礼制		DS (LC-PT)	WS (LC-PT)	Total (LC-PT)	LC (DS-WS)	PT (DS-WS)	503.4		4
过程	轧制过程中的力	75 (LC-PT)	102.3	177.3	-5.300				4
平价	及偏差分析					22			4
鄭块		Total (LC-PT)		WS (LC-PT) /WS-		PT (DS-WS)	1		
		/Total-LC	LC	LC	/aveLC:DS+WS	/aveP:DS+WS			4
		15.52%	13.19%	17.82% 新开設对向刚度差11.5	-0.93%	4.56%		1	4
吉论	2:零调偏差-5.2 3:轧钢时,LC压 4:设备变化:新	Lmm;操调量0.35i 差-4t,PT压差22.2 换拖车,测量F6底 ³	mm;DS加垫3mm; tt,正常。 F面,两侧水平差0.0		m ;	上牌坊顶板。		2	

Figure 12.36 Stiffness Evaluation of a Steel Plant

12.21 MPT - Mill Pacing Tracing

MPT (Mill Pacing Tracing) calculates the accurate tracking position of the head and tail once every 50ms.

Reduce waiting for steel placement.

The rolling pacing is increased by 3 seconds, and an additional 20 pieces of steel can be produced per

day.

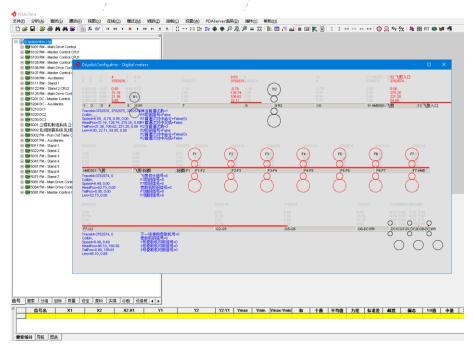


Figure 12.37 Rolling Pacing Tracing

12.22 IGBT Flexible DC Chopper Power Supply - Green Intelligent Super Arc Furnace

The project won the second prize of the National Science and Technology Progress Award. The PDA system can collect 20KHz data of current and voltage in each phase, and perform online and offline analysis of harmonics such as 3, 5, 7... 13, 15, 17.

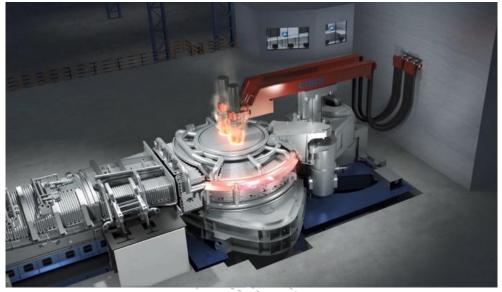


Figure 12.38 Green Intelligent Super Arc Furnace

The application of advanced technologies such as new IGBT flexible DC power supply technology, electrode stepless dual control intelligent regulation technology, continuous preheating technology for scrap steel, step wise continuous feeding technology for scrap steel, air-cooled contact needle bottom electrode technology, dioxin treatment and waste heat recovery technology, intelligent steelmaking technology, etc. can quickly respond to the smelting energy supply demand in the electric arc furnace and respond to short circuit and over current impact conditions, shorten the smelting cycle to within 30 minutes, and reduce power consumption to 250-300 kWh/t, The electrode consumption is 0.6-0.8kg/t, which is a new generation of green, energy-saving, environmentally friendly, and efficient electric furnace. Compared with conventional electric furnaces, it has great advantages in improving production efficiency, reducing electricity and electrode consumption, and improving metal recovery rate.

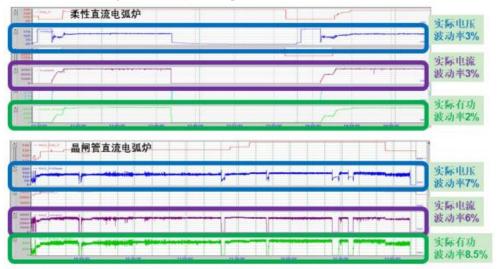


Figure 12.39 Performance Comparison Curve between Green Intelligent Super Electric Arc Furnace and Traditional Electric Arc Furnace

12.23 Mobile APP

PDA.apk is an Android installation package that requires storage permissions. The on-site configuration information for each project needs to be downloaded to a storage card for future use.

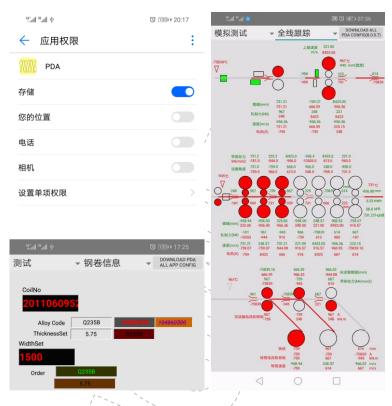


Figure 12.40 Real time data display and production monitoring system for various styles

12.24 PLC ring network fault detection

The ring network composed of multiple \$7-1500 controllers and HMIs seems to be working properly. When the PDA was connected to the network for 2ms data collection, it was found that dozens of data packets were lost every 6 seconds. However, when the PDA was directly connected to the PLC, everything was normal. Further investigation revealed that disconnecting the ring network was also normal. Later, the PLC version was lowered and the ring network was normal. It's not that the higher the PLC version, the better.

12.25 Mathematical Model Log

Modern steel rolling mathematical models are becoming increasingly complex. The traditional method is to write key data into. log files and analyze the. log text files when problems are found, which is not intuitive and inefficient. By sharing memory or networks, a large amount of model data can be recorded in PDA systems, accelerating the debugging progress of the model and the convenience and accuracy of fault analysis.

12.26 Comprehensive plan for data acquisition of company level main and auxiliary transmission systems

In order to isolate from the automated L1 system, signals with a sampling period of less than 10ms are collected through a dedicated PN network established by CBE20. For signals

with no special requirements for sampling period, data is read from S120 through standard Ethernet using Siemens internal communication protocol.

The PDA system saves the collected signals as. dat files and can also be saved to relational and temporal databases such as InfluxDB, making it convenient for various automatic reports and big data analysis such as Power BI, Fansoft, Grafana, etc.

Multiple PDA servers need to be set up according to the geographical location and number of transmission systems in each factory.

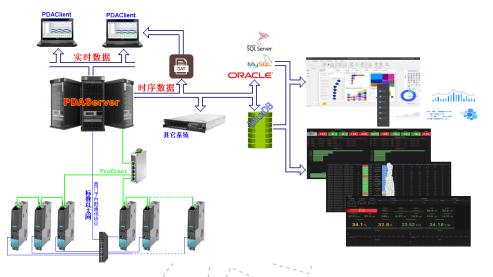


Figure 12.41 Comprehensive scheme for data acquisition of main and auxiliary transmission systems

12.27 S7-1500 and slave drop data collection scheme

The S7-1500 series PLC can achieve ms level data acquisition through standard ethernet UDP and Profinet(PDAServer as multiple PN slaves), the PN switch may directly forward all slave data to the PDAServer, the system scheme is shown in the following figure.

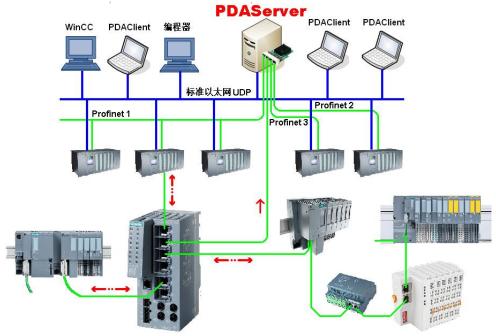


图 12.42 S7-1500 data collection scheme

13 Equipment model

No.	Model	Specification	MC60xx	PC	Order number
1		Channels: 10240	V	×	PDA SYS-N01-0AB0
1	PDA-1	Time base: 10~20ms Connection: 1	N	\checkmark	PDA SYS-N01-0AB1
2	PDA-2	Channels: 5120	V	×	PDA SYS-N02-0AB0
2	PDA-2	Time base: 0.05~20ms Connection: 1	V	\checkmark	PDA SYS-N02-0AB1
3	PDA-3	Channels: 5120		, ×,	PDA SYS-N03-0AB0
3	PDA-3	Time base: 0.05~20ms / Connection: 100	· · · · /	X	PDA SYS-N03-0AB1
4	PDA-4	Channels: 1024 Time base: 0.05~20ms	N	×	PDA SYS-N04-0AB0
4	FDA-4	Connection: 100	v	\checkmark	PDA SYS-N04-0AB1
5	PDA-5	Channels: 10240 Time base: 0.05~20ms	·····	×	PDA SYS-N05-0AB0
5	TDA-5	Connection: 100	, v	\checkmark	PDA SYS-N05-0AB1
6	PDA-6	Channels: 20480 Time base: 0.05~20ms	N	×	PDA SYS-N06-0AB0
0	I DA-0	Connection: 100	v	\checkmark	PDA SYS-N06-0AB1
7	PDA-7	Channels: 30720 Time base: 0.05~20ms	N	×	PDA SYS-N07-0AB0
/	I DA-7	Connection: 100	v	\checkmark	PDA SYS-N07-0AB1
8	PDA-8	Channels: Time base: specially made	N	×	PDA SYS-N08-0AB0
0	I DA-6	Time base: specially made Connection:	v	\checkmark	PDA SYS-N08-0AB1
9	PDA-9	Channels: 10240 Time base: 10~20ms	N	×	PDA SYS-N09-0AB0
,	IDA-9	Connection: 100	v	\checkmark	PDA SYS-N09-0AB1
10	PDA-10	Channels: 20480 Time base: 10~20ms		×	PDA SYS-N10-0AB0
10	I DA-10	Connection: 100	v	\checkmark	PDA SYS-N10-0AB1
11	PDA-11	Channels: / 30720 Time base: 10~20ms		×	PDA SYS-N11-0AB0
11	107-11	Connection: 100	v	\checkmark	PDA SYS-N11-0AB1
12	PDA-12	Channels: 51200 Time base: 10~20ms		×	PDA SYS-N12-0AB0
12	1 DA-12	Connection: 100	v	\checkmark	PDA SYS-N12-0AB1
13	PDA-20	Unlimited / 10~20ms	\checkmark	×	PDA SYS-N20-0AB0
14	PDA-21	Unlimited / 0.05~20ms	\checkmark	×	PDA SYS-N21-0AB0

Table 13.1 one set order form of standard configuration

No.	Model	Specification	MC60xx	PC	Order number
15	PDA-EVIS	工程车辆信息数据采集系统	\checkmark	×	PDA EVIS-N01-0AB0
16	PDA-LTA	长期历史趋势分析系统	\checkmark	×	PDA LTA-N01-0AB0
17	PDA-HDS	HDS 开放式高频时序数据库 HDServer	\checkmark	×	PDA HDS-N01-0AB0
18	WinCC-PDA	WinCC 升级 PDA 软件包	\checkmark	×	PDA WinCC-N01-0AB0
19	FTView-PDA	FTViev 升级 PDA 软件包	1	×	PDA FTView-N01-0AB0
20	ie-PDA	浏览器 PDA 功能包	\checkmark	×	PDA IE-N01-0AB0
21	C#-PDA	C#高频数据分析 PDA 软件包	1	`	PDA C#-N01-0AB0
22	PDA-DBU	数据库系统及升迁工具	\checkmark	×	PDA DBU-N01-0AB0
23	PDA-DCC	数字钢卷转换存贮系统	· · · · · · · · · · · · · · · · · · ·	,	PDA DCC-N01-0AB0
24	PDA-CFS	钢卷快速搜索统计系统	\checkmark	×	PDA CFS-N01-0AB0
25	PDA-FSS	钢卷快速搜索统计服务器		\checkmark	PDA FSS-N01-0AB0
26	PDA-DSO	设备诊断同步过采样系统	\checkmark	×	PDA DSO-N01-0AB0
27	PDA-DIA	工艺及设备诊断数字钢卷系统	1	×	PDA DIA-N01-0AB0
28					
29	PDA-EVT	事件同步数据解析转换工具	\checkmark	×	PDA EVT-N01-0AB0
30	PDA-RSA	轧辊剥落预警及快停系统	\checkmark	×	PDA RSA-N01-0AB0
31	PDA-RCM	· 和道电流监测系统	\checkmark	×	PDA RCM-N01-0AB0
32	PDA-DPI	设备诊断及工艺数据整合系统	\checkmark	×	PDA DPI-N01-0AB0
33	PDA-HDP	高频高密高速数据平台构建	\checkmark	×	PDA HDP-N01-0AB0
34					
35		· · · · · · · · · · · · · · · · · · ·			
36					

* Includes: Hardware Encryption Dog (customized design and manufacture); Data Acquisition Software; Data Analysis Software; Acquisition Card MC60xx (optional).

* Please specify the type of PLC when ordering.

* Please specify when ordering for special sampling period.

* There is no programming in PLC for some manufacturers, PDA reads data directly by variable address.

* PDA drivers can be developed cooperatively for special devices.

* PDA data interface is attached including third party.

No.	Model	Order number	Comment
1	PDAServer	PDA SRV-VER80-0AB0	Data acquisition soft
2	PDAClient	PDA CLT-VER80-0AB0	Online and offline analysis soft
3	QDRServer	PDA QDR-VER80-0AB0	Quality data record server for steel pipe
4	QDRServer	PDA QDR-VER81-0AB0	Quality data record server for HSM
5	QDRServer	PDA QDR-VER82-0AB0	distributed Quality data record server
6	QDRServer	PDA QDR-VER83-0AB0	Quality data record server for CSM
7	HDServer	PDA HDS-VER80-0AB0	Merge-PDA data files
8	SplitServer	PDA SPLIT-VER80-0AB0	Digital steel coil splitting system
9	TrimServer	PDA TRIM-VER80-0AB0	Digital steel coil cutting head and tail
10	StiffnessServer	PDA STIF-VER80-0AB0	Measurement data record of rolling mill stiffness
11	RollChangeServer	PDA RCH-VER80-0AB0	Rolling mill roll change data record
12	ModbusTcpServer	PDA MBS-VÈR80-0AB0	Modbus Server
13	mqttServer	PDA MQTT-VĒR80-0AB0	Mqtt Server
14	WebSocketServer	PDA WS-VER80-0AB0	WebSocket Server
15	Distribute	PDA DTB-VER80-0AB0	Distributed data acquisition system
16	Energy	PDA ENG-VER80-0AB0	Energy report system
17	RunningRecord	PDA RRD-VER80-0AB0	Running record report system
18	pdaAlarm	PDA ALM-VER80-0AB0	Routine trend alarm and operating record
19	WinRC	PDA WRC-VER80-0AB0	Windows real time control center
20	pdaTools /	PDA PTS-VER80-0AB0	PDA toolset
21	IPCheck	PDA IPC-VER80-0AB0	IP address check and alarm tool
22	pdaCloud ,	PDA CLD-VER80-0AB0	Collate data and upload to cloud automatically
23	dbUpgrade	PDA DBU-VER80-0AB0	History data upgrade tool
24	dbUpgradeRt	PDA DBU-VER80-0AB0	Real-time data upgrade tool
25	dbUpgradeTS	PDA DUR-VER80-0AB0	Time series database upgrade tool
26	ProcessServer	PDA PDS-VER80-0AB0	Process data conversion server
27	spotCheck	PDA SCHK-VER80-0AB0	Spot check subsystem
28	PDA AUTHORITY	PDA USB-AUTH-0AB0	USB interface PDA authority
29	CFS	CFS SRV-VER80-0AB0	digital Coil Fast Search system
30	iPDA	PDA IPDA-VER80-0AB0	Real time data PDA for mobile device
31	iPDA	PDA IPDA-VER80-0AB1	Real time data multi-PDA for mobile device
32	MC6068	PDA PCI-MC6068-0AB0	PCI High speed data acquisition card
33	MC6069	PDA PCIE-MC6069-0AB0	PCIe High speed data acquisition card
34	MC6070	PDA USB-MC6070-0AB0	USB High speed data acquisition card
35	PDA System	PDA USB-SYS-0AB0	PDA system disk
36	PDA DOT	PDA DOT-1024-0AB0	PDA channel amount, 1024, Other is similar
37	PDA PROTOCOL STACK	PDA PROT-STACK-0AB0	PDA protocol stack
38	PDA LIB	PDA LIB-PLC-0AB0	PDA library and user program
			•

 Table 13.2 Interface module and part order form

39	PDA ISO-AI	PDAU ISO-16AI-0AB0	16 channel full isolated analog input module
40	PDA ISO-DI	PDAU ISO-16DI-0AB0	16 channel full isolated digital input module
41	PDA ISO-AIDI	PDAU ISO-16AIDI-0AB0	16 channel isolated analog and digital input module
42	PDA ISO-DI	PDAU ISO-32DI-0AB0	32 channel isolated digital input module
43	PDA SSI	PDAU SSI-8CH-0AB0	8 channels SSI input module
44	PDA COM	PDAU COM-2AI-0AB0	2 channel RS232 PDA analog input module
45	PDA DPM	PDA DPM-2B244-0AB0	PDA Profibus-DP interface module
46	PDA MANUAL	PDA REF-MANU-0AB0	PDA reference manual of Chinese print
47	PDA MANUAL	PDA REF-MANU-0AB1	PDA reference manual of English print
48	PDA SERVER	PDA SRV-HP-0AB0	PDA server, HP PC
49	PDA SERVER	PDA SRV-DELL-0AB0	PDA server, DELL PC
50	PDA DPM	PDA DPM-4B244-0AB2	PDA gateway Profibus-DP
51	PDA AS-Interface	PDA	PDA gateway AS-Interface
52	PDA ISO-AIDI	PDAU ISO-8AIDI-0AB0	
53	PDA cc-link	PDA CC-LINK-0AB2	PDA gateway cc-link
54	PDA DALI DMX	PDA DALI-DMX-0AB2	PDA gateway DALI DMX
55	PDA enocean	PDA ENOCEAN-0AB2	PDA gateway enocean
56	PDA InterBus	PDA INTERBUS-0AB2	PDA gateway InterBus
57	PDA io-link	PDA IO-LINK-0AB2	PDA gateway io-link
58	PDA KNX/EIB	PDA KNX-EIB-0AB2	PDA gateway KNX/EIB
59	PDA lightbus	PDA LIGHTBUS-0AB2	PDA gateway lightbus
60	PDA Lonworks	PDA LONWORKS-0AB2	PDA gateway Lonworks
61	PDA M-BUS	PDA M-BUS-0AB2	PDA gateway M-BUS
62	PDA MP-BUS	PDA MP-BUS-0AB2	PDA gateway MP BUS
63	PDA PN-MSTR	PDA PN-MSTR-0AB0	PDA Profinet master switch
64	PDA COM-RUSB	PDA COM-RUSB-0AB0	PDA serial port USB reset device
		/	

Table 13.3 PDA libraries and user program order form

No.	Model	Order number	Comment
1	PDA LIB	PDA LIB-PLC-0AB0	S7-400 high speed
2	PDA LIB	PDA LIB-PLC-0AB6	S7-300 high speed
3	PDA LIB	PDA LIB-PLC-0AB22	Ethernet/IP
4	PDA LIB	PDA LIB-PLC-0DP0	Profibus-DP in S7-400/300
5	PDA LIB	PDA LIB-PLC-0BF25	Beckhoff
6	PDA LIB	PDA LIB-PLC-0WG25	Wago
7	PDA LIB	PDA LIB-PLC-0MG25	Moog
8	PDA LIB	PDA LIB-PLC-0AB8	Profinet
9	PDA LIB	PDA LIB-PLC-0BF36	Beckhoff realtime ethernet
10			

Table 13.4 PDA protocol stack order form

No.	Model	Order number	Comment
1	PDA PROTOCOL	PDA PROT-STACK-0AB0	S7-400 high speed
2	PDA PROTOCOL	PDA PROT-STACK-0AB6	S7-300 high speed
3	PDA PROTOCOL	PDA PROT-STACK-0AB21	S7-400/300/TDC/FM458 variable access by IP
4	PDA PROTOCOL	PDA PROT-STACK-0AB27	S7-1200/1500 variable access by IP
5	PDA PROTOCOL	PDA PROT-STACK-0AB1	S7-400 variable access by MAC
6	PDA PROTOCOL	PDA PROT-STACK-0AB54	\$7-400/300 ISO transport connection
7	PDA PROTOCOL	PDA PROT-STACK-0AB3	MPI/DP variable access
8	PDA PROTOCOL	PDA PROT-STACK-0AB23	Modbus - variable access
9	PDA PROTOCOL	PDA PROT-STACK-0AB33	R\$232
10	PDA PROTOCOL	PDA PROT-STACK-0AB25	Standard Udp
11	PDA PROTOCOL	PDA PROT-STACK-0AB32	Kernal Udp
12	PDA PROTOCOL	PDA PROT-STACK-0AB20	Standard Tcp server
13	PDA PROTOCOL	PDA PROT-STACK-0AB7	GDM(Global Data Memory)
14	PDA PROTOCOL	PDA PROT-STACK-0AB11	Reflective memory
15	PDA PROTOCOL	PDA PROT-STACK-0AB28	ModbusTCP - memory block
16	PDA PROTOCOL	PDA PROT-STACK-0AB31	ModbusTCP - variable access
17	PDA PROTOCOL	PDA PROT-STACK-0AB22	Ethernet/IP
18	PDA PROTOCOL	PDA PROT-STACK-0AB29	Ethernet/IP-backplate
19	PDA PROTOCOL	PDĀ PROT-STACK-0AB59	Ethernet/IP backplate block
20	PDA PROTOCOL	PDA PROT-STACK-0AB26	EGD(Ethernet Global Data)
21	PDA PROŢOCOL	PDA PROT-STACK-0AB18	SRTP(Service Request Transfer Protocol)
22	PDA PROTOCOL	PDA PROT-STACK-0AB30	SNPX
23	PDA PROTOCOL	PDA PROT-STACK-0AB8	Profinet
24	PDA PROTOCOL	PDA PROT-STACK-0AB2	Profinet for simotion and other driver
25	PDAPROTOCOL	PDA PROT-STACK-0AB9	Profinet for TDC
26	PDA PROTOCOL	PDA PROT-STACK-0AB5	EtherCAT
27	PDA PROTOCOL	PDA PROT-STACK-0AB36	Beckhoff Realtime Ethernet
28	PDA PROTOCOL	PDA PROT-STACK-0AB15	Beckhoff ADS
29	PDA PROTOCOL	PDA PROT-STACK-0AB38	Iba data
30	PDA PROTOCOL	PDA PROT-STACK-0AB37	Logical signals
31	PDA PROTOCOL	PDA PROT-STACK-0AB39	the third party data
32	PDA PROTOCOL	PDA PROT-STACK-0AB24	standard Tcp client
33	PDA PROTOCOL	PDA PROT-STACK-0AB12	OPC Automation

			_
34	PDA PROTOCOL	PDA PROT-STACK-0AB13	OPC Com
35	PDA PROTOCOL	PDA PROT-STACK-0AB35	Realtime data file
36	PDA PROTOCOL	PDA PROT-STACK-0AB4	MITSUBISHI MC format 4(RS232)
37	PDA PROTOCOL	PDA PROT-STACK-0AB17	MELSECT-QnA 3E(Ethernet)
38	PDA PROTOCOL	PDA PROT-STACK-0AB10	DL/T645-2007(RS232)
39	PDA PROTOCOL	PDA PROT-STACK-0AB34	Send data to PLC by UDP
40	PDA PROTOCOL	PDA PROT-STACK-0AB19	S7-200smart variable access by IP
41	PDA PROTOCOL	PDA PROT-STACK-0AB40	CU320 Profinet
42	PDA PROTOCOL	PDA PROT-STACK-0AB41	Vehicle CAN
43	PDA PROTOCOL	PDA PROT-STACK-0AB50	Tcp packet for 0.0625ms(16kHz) e.g. S7-1517
44	PDA PROTOCOL	PDA PROT-STACK-0AB51	Tcp packet for 0.0625ms(16kHz) e.g. S7-1517
45	PDA PROTOCOL	PDA PROT-STACK-0AB55	Udp packet for 0.05ms(20kHz)
46	PDA PROTOCOL	PDA PROT-STACK-0AB56	Realtime Ethernet packet for 0.05ms(20kHz)
47	PDA PROTOCOL	PDA PROT-STACK-0AB52	WebSocket
48	PDA PROTOCOL	PDA PROT-STACK-0AB53	RS232 packet
49	PDA PROTOCOL	PDA PROT-STACK-0AB57	mqtt
50	PDA PROTOCOL	PDA PROT-STACK-0AB58	Opc Ua
51	PDA PROTOCOL	PDA PROT-STACK-0AB60	PCI/PCIe memory
52	PDA PROTOCOL	PDA PROT-STACK-0AB61	TCnet
53	PDA PROTOCOL	PDA PROT-STACK-0AB62	Ethernet/IP backplate(3rd)
54	PDA PROTOCOL	PDA PROT-STACK-0AB63	Ethernet/IP backplate block(3rd)
55			
56			
57			
58			
59			
60		/	
61			
62			
63			
64			
65			
66			
		1	

KingWei Impress Moon Technology (Wuhan) Co.,Ltd. Automation & Drives Group pda2002@s i na. com 15927056236

If there is a change, without notice KingWei Ltd. all rights reserved.

The information provided in the sample is a simple an introduction to the general description and characteristics of the product. The content may differ from the actual application situation, and may change with the further development of the product.

of the product. KingWei is responsible for providing the product characteristics only when the relevant contract terms are clearly specified.

Order : PDA REF-MANU-0AB1